PHÂN LOẠI BỆNH RUNG NHĨ DÙNG XGBOOST VÀ HỌC SÂU

Thông tin bài báo

Ngày nhận bài: 07/03/19                Ngày đăng: 08/03/19

Các tác giả

1. Nguyễn Hồng Quang Email to author, Trường Đại học Bách Khoa Hà Nội
2. Trịnh Văn Loan, Trường Đại học Bách Khoa Hà Nội
3. Phạm Ngọc Hưng, Trường Đại học Sư phạm Kỹ thuật Hưng Yên
4. Hà Quang Thái, Công ty TNHH phát triển phần mềm Toshiba (Việt Nam)
5. Bùi Trung Anh, Công ty TNHH phát triển phần mềm Toshiba (Việt Nam)
6. Phan Công Mạnh, Công ty TNHH phát triển phần mềm Toshiba (Việt Nam)

Tóm tắt


Bài báo này đề xuất một phương pháp phân loại tín hiệu rung nhĩ được đo từ các thiết bị điện tâm đồ (ECG) cầm tay. Phương pháp tiếp cận của chúng tôi sử dụng kết hợp XGBoost và mô hình học sâu (deep learning) trong đó XGBoost được xây dựng trên bộ đặc trưng được tăng cường và tinh chỉnh qua thực nghiệm, thực hiện vai trò sinh dữ liệu cho mô hình học sâu. Chúng tôi sử dụng các kỹ thuật phân đoạn và sinh nhãn cho các đoạn tín hiệu, giúp tăng cường, tạo sự cân bằng và độ tin cậy cho bộ dữ liệu. Mô hình học sâu với hướng tiếp cận học chuyển đổi (transfer learning) được sử dụng để thực hiện phân loại các đoạn tín hiệu dưới dạng ảnh phổ tần số. Chúng tôi thử nghiệm mô hình trên bộ dữ liệu của cuộc thi PhysioNet/Computing in Cardiology Challenge 2017 (PCCC 2017) để phân loại 4 loại tín hiệu: rung nhĩ, bình thường, các loại bệnh tim khác và nhiễu. Mô hình học sâu thể hiện khả năng dự đoán tốt trên các đoạn dữ liệu ngắn với kết quả F1 = 0,8397. Nghiên cứu của chúng tôi mở ra một hướng phát triển mới cho bài toán phân loại tín hiệu ECG khi thực hiện phân loại trên các đoạn tín hiệu ngắn, đồng thời mang đến một giải pháp ứng dụng các mô hình học sâu khi bài toán gặp những hạn chế về mặt dữ liệu.

Từ khóa


Tín hiệu điện tim, Bệnh rung nhĩ, học sâu, XGBoost, mạng nơ ron tích chập, Biến đổi Wavelet rời rạc

Toàn văn:

PDF

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved