TỔNG QUAN VỀ ỨNG DỤNG CÔNG NGHỆ OZONE TRONG XỬ LÝ NƯỚC THẢI DỆT NHUỘM
Thông tin bài báo
Ngày nhận bài: 04/04/23                Ngày hoàn thiện: 27/04/23                Ngày đăng: 28/04/23Tóm tắt
Ứng dụng công nghệ ozone trong xử lý nước thải dệt nhuộm đang là hướng đi mới, nhiều triển vọng. Bài viết này trình bày tổng quan về nước thải dệt nhuộm, công nghệ ozone và ứng dụng công nghệ ozone trong xử lý nước thải dệt nhuộm thông qua việc phân tích các nghiên cứu về tính chất, nguồn phát sinh, hiệu quả xử lý cũng như thách thức khi sử dụng công nghệ ozone trong xử lý nước thải dệt nhuộm. Từ đó nhấn mạnh tầm quan trọng của việc cần có các nghiên cứu sâu hơn để xác định đúng những ưu điểm và nhược điểm, cũng như khả năng ứng dụng công nghiệp và mở rộng của việc sử dụng công nghệ ozone trong xử lý nước thải dệt nhuộm, nhằm đảm bảo hiệu quả xử lý bền vững, giảm thiểu các nguy cơ tác động xấu đến sức khỏe con người và môi trường. Phương pháp được sử dụng trong nghiên cứu này là: Phân tích, tổng hợp và so sánh thông tin để đánh giá và đưa ra những nhận xét có giá trị. Kết quả nghiên cứu hữu ích cho người mới nghiên cứu về nước thải dệt nhuộm, công nghệ ozone và ứng dụng của nó, giúp họ có được cái nhìn tổng quan và định hướng được cho công việc nghiên cứu của mình.
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] R. Al-Tohamy, S. S. Ali, F. Li, K. M. Okasha, Y. A. -G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, and J. Sun, "A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety," Ecotoxicol. Environ. Saf., vol. 231, 2021, Art. no. 113160, doi: 10.1016/j.ecoenv.2021.113160.
[2] A. Azanaw, B. Birlie, B. Teshome, and M. Jemberie, "Textile effluent treatment methods and eco-friendly resolution of textile wastewater," Case Stud. Chem. Environ. Eng., vol. 6, 2022a, Art. no. 100230, doi: 10.1016/j.cscee.2022.100230.
[3] T. A. Khattab, M. S. Abdelrahman, and M. Rehan, "Textile dyeing industry: environmental impacts and remediation," Environ. Sci. Pollut. Res. Int., vol. 27, pp. 3803–3818, 2020, doi: 10.1007/s11356-019-07137-z.
[4] M. Hassaan, A. E. Nemr, and M. A. Hassaan, "Health and Environmental Impacts of Dyes: Mini Review," Am. J. Environ. Sci. Eng., vol. 1, pp. 64–67, 2017, doi: 10.11648/j.ajese.20170103.11.
[5] B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio, "Effects of textile dyes on health and the environment and bioremediation potential of living organisms," Biotechnol. Res. Innov., vol. 3, pp. 275–290, 2019, doi: 10.1016/j.biori.2019.09.001.
[6] S. Judd, "The textile industry," in Membranes for Industrial Wastewater Recovery and Re-Use, 2003, pp. 75–101, doi: 10.1016/B978-1-85617-389-6.50002-3.
[7] C. M. Kao, M. S. Chou, W. L. Fang, B. W. Liu, and B. R. Huang, "Regulating colored textile wastewater by 3/31 wavelength admi methods in Taiwan," Chemosphere., vol. 44, pp. 1055–1063, 2002, doi: 10.1016/S0045-6535(00)00502-6.
[8] A. M. Lotito, U. Fratino, G. Bergna, and C. D. Iaconi, "Integrated biological and ozone treatment of printing textile wastewater," Chem. Eng. J., vol. 3, pp. 195–196, 2012, doi: 10.1016/j.cej.2012.05.006.
[9] D. Deng, M. Lamssali, N. Aryal, A. Ofori-Boadu, M. K. Jha, and R. E. Samuel, "Textiles wastewater treatment technology: A review," Water Environ. Res., vol. 92, pp. 1805–1810, 2020, doi: 10.1002/wer.1437.
[10] D. Rajkumar, B. J. Song, and J. G. Kim, "Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds," Dye. Pigment., vol. 72, pp. 1–7, 2007, doi: 10.1016/j.dyepig.2005.07.015.
[11] X.-B. Gong, "Advanced treatment of textile dyeing wastewater through the combination of moving bed biofilm reactors and ozonation," Sep. Sci. Technol., vol. 51, pp. 1589–1597, 2016, doi: 10.1080/01496395.2016.1165703.
[12] H. A. Eren, İ. Yiğit, S. Eren, and O. Avinc, "Ozone: An Alternative Oxidant for Textile Applications," in Sustainability in the Textile and Apparel Industries: Production Process Sustainability, S. S. Muthu and M. A. Gardetti, Eds., Springer, Cham, 2020, pp. 81–98, doi: 10.1007/978-3-030-38545-3_3.
[13] N. Jahan, M. Tahmid, A. Z. Shoronika, A. Fariha, H. Roy, M. N. Pervez, Y. Cai, V. Naddeo, and M. S. Islam, "A Comprehensive Review on the Sustainable Treatment of Textile Wastewater: Zero Liquid Discharge and Resource Recovery Perspectives," Sustain., vol. 14, pp. 1–38, 2022, doi: 10.3390/ su142215398.
[14] X. Lu, L. Liu, R. Liu, and J. Chen, "Textile wastewater reuse as an alternative water source for dyeing and finishing processes: A case study," Desalination., vol. 258, pp. 229–232, 2010, doi: 10.1016/j.desal.2010.04.002.
[15] D. A. Yaseen and M. Scholz, "Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review," International Journal of Environmental Science and Technology, vol. 16, pp.1193–1226, 2019, doi: 10.1007/s13762-018-2130-z.
[16] H. Halepoto, T. Gong, and H. Memon, "Current status and research trends of textile wastewater treatments — A bibliometric-based study," Front. Environ. Sci., vol. 10, pp. 1–18, 2022, doi: 10.3389/fenvs.2022.1042256.
[17] S. M. Imtiazuddin, M. Mumtaz, and K. A. Mallick, "Pollutants of wastewater characteristics in textile industries," J. Basic Appl. Sci., vol. 8, no. 2, pp. 554-556, 2012.
[18] M. R. Sarker, M. Chowdhury, and A. Deb, "Reduction of Color Intensity from Textile Dye Wastewater Using Microorganisms: A Review," Int. J. Curr. Microbiol. Appl. Sci., vol. 8, pp. 3407–3415, 2019, doi: 10.20546/ijcmas.2019.802.397.
[19] I. Petrinić, N. Bajraktari, and C. Hélix-Nielsen, “Membrane technologies for water treatment and reuse in the textile industry,” in Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications, A. Basile, A. Cassano, and N.K.B.T.-A. Rastogi, Eds., Woodhead Publishing Series in Energy, Oxford, 2015, pp. 537–550, doi:10.1016/B978-1-78242-121-4.00017-4.
[20] P. S. Kumar and A. Saravanan, “Sustainable wastewater treatments in textile sector,” in Sustainable Fibres and Textiles, S.S. Muthu, Ed., Woodhead Publishing, 2017, pp. 323–346, doi: 10.1016/B978-0-08-102041-8.00011-1.
[21] H. Patel and R. T. Vashi, “Characterization of Textile Wastewater,” in Characterization and Treatment of Textile Wastewater, Elsevier, Boston, 2015, pp. 21–71, doi: 10.1016/B978-0-12-802326-6.00002-2.
[22] F. H. Hussein, "Chemical properties of treated textile dyeing wastewater," Asian J. Chem., vol. 25, pp. 9393–9400, 2013, doi: 10.14233/ajchem.2013.15909A.
[23] Z. Wang, M. Xue, K. Huang, and Z. Liu, "Textile Dyeing Wastewater Treatment," in Advances in Treating Textile Effluent, P. J. Hauser, IntechOpen, 2011, doi: 10.5772/22670.
[24] R. Kant, "Textile dyeing industry an environmental hazard," Nat. Sci., vol. 4, pp. 22–26, 2012.
[25] B. Sarkodie, J. Amesimeku, C. Frimpong, E. K. Howard, Q. Feng, and Z. Xu, "Photocatalytic degradation of dyes by novel electrospun nanofibers: A review," Chemosphere., vol. 313, 2023, Art. no. 137654, doi: 10.1016/j.chemosphere.2022.137654.
[26] D. J. Dailin, N. Z. Nordin, L.T. Tan, S. Ramli, L. F. Chuah, N. Sapawe, Y. M. M. Jusoh, D.N.A. Zaidel, D. Sukmawati, and H. El-Enshasy, "State of the art Bioremediation of textile dye in wastewater: A Review," Biosci. Res, vol. 19, pp. 914–924, 2022.
[27] O. A. Yildirim, M. Bahadir, and E. Pehlivan, “Detrimental effects of commonly used textile dyes on the aquatic environment and human health – a review,” Feb-Fresenius Environ. Bull., no. 9329, pp.33-41, 2022.
[28] A. J. Brodowska, A. Nowak, and K. Śmigielski, "Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview," Crit. Rev. Food Sci. Nutr., vol. 58, pp. 2176–2201, 2017, doi: 10.1080/10408398.2017.1308313.
[29] M. F. R. Boner and P. J. Lau, Wastewater Technology Fact Sheet Ozone Disinfection, United States Environ. Prot. Agnecy, 2019, pp. 1–7.
[30] B. Wang, W. Shi, H. Zhang, H. Ren, and M. Xiong, "Promoting the ozone-liquid mass transfer through external physical fields and their applications in wastewater treatment: A review," J. Environ. Chem. Eng., vol. 9, 2021, Art. no. 106115, doi: 10.1016/j.jece.2021.106115.
[31] S. Bai, S. Du, H. Liu, S. Lin, X. Zhao, Z. Wang, and Z. Wang, "The causal and independent effect of ozone exposure during pregnancy on the risk of preterm birth: Evidence from northern China," Environ. Res, vol. 214, 2022, Art. no. 113879, doi: 10.1016/j.envres.2022.113879.
[32] W. Shi, Q. Sun, P. Du, S. Tang, C. Chen, Z. Sun, J. Wang, T. Li, and X. Shi, "Modification Effects of Temperature on the Ozone–Mortality Relationship: A Nationwide Multicounty Study in China," Environ. Sci. Technol., vol. 54, pp. 2859–2868, 2020, doi: 10.1021/acs.est.9b05978.
[33] G. Zhang, Q. Hu, R. Cao, R. Fu, H. Risalat, X. Pan, Y. Hu, B. Shang, and R. Wu, "Yield loss in rice by acute ozone pollution could be recovered," Agric. Environ. Lett., vol. 7, pp. 1–5, 2022, doi: 10.1002/ael2.20093.
[34] F. Geering, "Ozone applications: The state-of-the-art in Switzerland," Ozone Sci. Eng., vol. 21, pp. 187–200, 1999, doi: 10.1080/01919519908547252.
[35] L. Franken, The application of ozone technology for public health and industry, Food Saf. Secur. Kansas State Univ., 2005, p. 1-16.
[36] H. Shin and J. Kang, "Reducing perceived health risk to attract hotel customers in the COVID-19 pandemic era: Focused on technology innovation for social distancing and cleanliness," Int. J. Hosp. Manag, vol. 91, 2020, Art. no. 102664, doi: 10.1016/j.ijhm.2020.102664.
[37] J. Wang, H. Chen, R. Yuan, F. Wang, F. Ma, and B. Zhou, "Intensified degradation of textile wastewater using a novel treatment of hydrodynamic cavitation with the combination of ozone," J. Environ. Chem. Eng., vol. 8, 2020, Art. no. 103959, doi: 10.1016/j.jece.2020.103959.
[38] A. Körlü, “Use of Ozone in the Textile Industry,” in Textile Industry and Environment, IntechOpen, Rijeka, 2018, doi: 10.5772/intechopen.81774.
[39] L. Bilińska, K. Blus, M. Bilińska, and M. Gmurek, "Industrial textile wastewater ozone treatment: Catalyst selection," Catalysts, vol. 10, pp. 1–16, 2020, doi: 10.3390/catal10060611.
[40] B. Shriram, "Ozonation of Textile Dyeing Wastewater - A Review," J. Inst. Public Heal. Eng, vol. 15, pp. 46–47, 2014.
[41] E. I. Epelle, A. Macfarlane, M. Cusack, A. Burns, J. A. Okolie, W. Mackay, M. Rateb, and M. Yaseen, "Ozone application in different industries: A review of recent developments,” Chem. Eng. J., vol. 454, 2020, Art. no. 140188.
[42] Y. Zhang, K. Shaad, D. Vollmer, and C. Ma, "Treatment of textile wastewater by advanced oxidation processes – A review," Glob. Nest J., vol. 13, pp. 1–22, 2021.
[43] I. A. Shaikh, F. Ahmed, A. R. Sahito, and A.A. Pathan, “In-situ Decolorization of Residual Dye Effluent in Textile Jet Dyeing Machine by Ozone,” Pakistan Journal of Analytical & Environmental Chemistry, vol. 15, no. 2, pp. 71–76, 2014.
[44] G. Asgari, J. Faradmal, H. Z. Nasab, and H. Ehsani, "Catalytic ozonation of industrial textile wastewater using modified C-doped MgO eggshell membrane powder," Adv. Powder Technol., vol. 30, pp.1297–1311, 2019, doi: 10.1016/j.apt.2019.04.003
[45] O. S. Rizvi, A. Ikhlaq, U.U. Ashar, U.Y. Qazi, A. Akram, I. Kalim, A. Alazmi, S.M. I. Shamsah, K. A. A. Al-Sodani, R. Javaid, and F. Qi, "Application of poly aluminum chloride and alum as catalyst in catalytic ozonation process after coagulation for the treatment of textile wastewater," J. Environ. Manage., vol. 323, 2022, Art. no. 115977, doi: 10.1016/j.jenvman.2022.115977.
[46] M. Faghihinezhad, M. Baghdadi, M. S. Shahin, and A. Torabian, "Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst," Sep. Purif. Technol., vol. 283, 2022, Art. no. 120208, doi: 10.1016/j.seppur.2021.120208.
[47] Y. D. Shahamat, M. Masihpour, P. Borghei, and S. H. Rahmati, "Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design," Inorg. Chem. Commun., vol. 143, 2022, Art. no. 109785, doi: 10.1016/j.inoche.2022.109785.
[48] J. Shajeelammal, S. Mohammed, K.P. Prathish, A. Jeeva, A. Asok, and S. Shukla, "Treatment of real time textile effluent containing azo reactive dyes via ozonation, modified pulsed low frequency ultrasound cavitation, and integrated reactor," J. Hazard. Mater. Adv., vol. 7, 2022, Art. no. 100098, doi: 10.1016/j.hazadv.2022.100098.
[49] J. Liang, X.-A. Ning, J. Sun, J. Song, Y. Hong, and H. Cai, "An integrated permanganate and ozone process for the treatment of textile dyeing wastewater: Efficiency and mechanism," J. Clean. Prod., vol. 204, pp. 12–19, 2018, doi: 10.1016/j.jclepro.2018.08.112.
[50] U. Ewuzie, O. D. Saliu, K. Dulta, S. Ogunniyi, A. O. Bajeh, K. O. Iwuozor, and J.O. Ighalo, "A review on treatment technologies for printing and dyeing wastewater (PDW)," J. Water Process Eng., vol. 50, 2022, Art. no. 103273, doi: 10.1016/j.jwpe.2022.103273.
[51] D. P. V. Vuuren, E. Stehfest, M. G. J. D. Elzen, T. Kram, J. V. Vliet, S. Deetman, M. Isaac, K. K. Goldewijk, A. Hof, A. M. Beltran, R. Oostenrijk, and B. V. Ruijven, "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Clim. Change, vol. 109, no. 95, 2011, doi: 10.1007/s10584-011-0152-3.
[52] R.G. Rice, C.M. Robson, G.W. Miller, and A.G. Hill, "Uses of ozone in drinking water treatment," J. AWWA., vol. 73, pp. 44–57, 1981.
[53] M. N. Morshed, S. A. Azad, M. A. M. Alam, H. Deb, and A. K. Guha, "An Instigation to Green Manufacturing: Characterization and Analytical Analysis of Textile Wastewater for Physico-Chemical and Organic Pollution Indicators," Am. J. Environ. Sci. Technol., vol. 1, pp. 11–21, 2016.
[54] E. Grignani, A. Mansi, R. Cabella, P. Castellano, A. Tirabasso, R. Sisto, M. Spagnoli, G. Fabrizi, F. Frigerio, and G. Tranfo, "Safe and Effective Use of Ozone as Air and Surface Disinfectant in the Conjuncture of Covid-19," Gases, vol. 01, pp. 19-32, 2021, Art. no. 103390, doi: 10.3390/gases1010002.
[55] L. G. Sorokhaibam and M. Ahmaruzzaman, “Phenolic Wastewater Treatment,” in Development and Applications of New Adsorbent Materials, Butterworth-Heinemann, Oxford, 2014, pp. 323–368, doi: 10.1016/B978-0-08-099968-5.00008-8.
[56] X. Wang, X. Wang, J. Mi, Q. Du, Y. Wang, W. Chen, D. Sun, W. Song, M. Shao, and R. Jia, "UV/H2O2/O3 removal efficiency and characterization of algae-derived organic matter and odorous substances," J. Environ. Chem. Eng., vol. 11, 2022, Art. no. 109128, doi: 10.1016/j.jece.2022.109128.
[57] L. M. da Silva and W.F. Jardim, "Trends and strategies of ozone application in environmental problems," Quim. Nov., vol. 29, pp. 310–317, 2006.
[58] T. B. N. Vu, T. H. H. Hoang, and L. H. Trinh, “Actual color treatment of textile dyeing wastewater by advanced oxidation method,” Natural Sciences and Technology - VNU Journal of Science, vol. 32, no. 4, pp. 97-103, 2016.
[59] H. T. Van, L. H. Nguyen, T. K. Hoang, T. P. Tran, A. T. Vo, T. T. Pham, and X. C. Nguyen, “Using FeO-constituted Iron Slag wastes as heterogeneous catalyst for Fenton and Ozonation processes to degrade Reactive Red 24 from aqueous solution,” Separation and Purification Technology, vol. 224, pp. 431-442, 2019.
[60] T. A. Nguyen, K. H. Pham, and T. T. Nguyen, “Treating textile wastewater by combination of advanced oxidation process and UV light,” Journal of Science of Lac Hong University, vol. 9, pp. 047-052, 2020.
[61] T. H. Nguyen, L. H. Nguyen, H. T. Van, T. D. Nguyen, T. H. V. Nguyen, T. H. H. Chu, T. V. Nguyen, X. H. Vu, and K. H. H. Aziz, “Heterogeneous catalyst ozonation of Direct Black 22 from aqueous solution in the presence of metal slags originating from industrial solid wastes,” Sep. Purif. Technol., vol. 233, 2020, Art. no. 115961.
DOI: https://doi.org/10.34238/tnu-jst.7668
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu