NGHIÊN CỨU THỰC NGHIỆM ĐỂ ĐÁNH GIÁ GIA CÔNG CAO TỐC CÓ HỖ TRỢ GIA NHIỆT ĐẾN ĐỘ MÒN CỦA DỤNG CỤ CẮT VÀ ĐỘ NHÁM BỀ MẶT TRONG KHI GIA CÔNG THÉP SKD61 SAU NHIỆT LUYỆN
Thông tin bài báo
Ngày nhận bài: 15/05/23                Ngày hoàn thiện: 24/05/23                Ngày đăng: 24/05/23Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Z. Q. Liu, X. Ai, H. Zhang, Z. T. Wang, and Y. Wan, “Wear patterns and mechanisms of cutting tools in high-speed face milling,” J. Mater. Process. Technol., vol. 129, no. 1–3, pp. 222–226, 2002, doi: 10.1016/S0924-0136(02)00605-2.
[2] X. Cui and J. Zhao, “Cutting performance of coated carbide tools in high-speed face milling of AISI H13 hardened steel,” Int. J. Adv. Manuf. Technol., vol. 71, no. 9–12, pp. 1811–1824, 2014, doi: 10.1007/s00170-014-5611-3.
[3] V. D. Calatoru, M. Balazinski, J. R. R. Mayer, H. Paris, and G. L’Espérance, “Diffusion wear mechanism during high-speed machining of 7475-T7351 aluminum alloy with carbide end mills,” Wear, vol. 265, no. 11–12, pp. 1793–1800, 2008, doi: 10.1016/j.wear.2008.04.052.
[4] T. H. Nguyen, T. B. Mac, V. C. Tong, T. L. Banh, and D. T. Nguyen, “A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy,” Int. J. Adv. Manuf. Technol., vol. 98, no. 1–4, pp. 177–188, 2018, doi: 10.1007/s00170-017-1063-x.
[5] C. Wang, Y. Xie, L. Zheng, Z. Qin, D. Tang, and Y. Song, “Research on the Chip Formation Mechanism during the high-speed milling of hardened steel,” Int. J. Mach. Tools Manuf., vol. 79, pp. 31–48, 2014, doi: 10.1016/j.ijmachtools.2014.01.002.
[6] P. Lezanski and M. C. Shaw, “Tool face temperatures in high speed milling,” J. Manuf. Sci. Eng. Trans. ASME, vol. 112, no. 2, pp. 132–135, 1990, doi: 10.1115/1.2899555.
[7] X. Tian, J. Zhao, J. Zhao, Z. Gong, and Y. Dong, “Effect of cutting speed on cutting forces and wear mechanisms in high-speed face milling of Inconel 718 with Sialon ceramic tools,” Int. J. Adv. Manuf. Technol., vol. 69, no. 9–12, pp. 2669–2678, 2013, doi: 10.1007/s00170-013-5206-4.
[8] T.-B. Mac, T.-T. Luyen, and D.-T. Nguyen, “The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel,” Metals, vol. 13, 2023, Art. no. 971, doi: 10.3390/met13050971.
[9] T.-B. Mac, T.-T. Luyen, and D.-T. Nguyen, “Assessment of the Effect of Thermal-Assisted Machining on the Machinability of SKD11 Alloy Steel,” Metals, vol. 13, 2023, Art. no. 699, doi: 10.3390/met 13040699.
[10] P. D. Tran and D. T. Nguyen, “A study on the investigation of the microstructure of SKD61 steel after selected quenching and tem-pering processes,” Mod. Phys. Lett. B, 2023, Art. no. 2340022, doi: 10.1142/S0217984923400225.
[11] T. L. Ginta and A. K. M. N. Amin, “Thermally-assisted end milling of titanium alloy Ti-6Al-4V using induction heating,” Int. J. Mach. Mach. Mater., vol. 14, no. 2, pp. 194–212, 2013, doi: 10.1504/IJMMM.2013.055737.
[12] R. B. Da Silva, Á. R. MacHado, E. O. Ezugwu, J. Bonney, and W. F. Sales, “Tool life and wear mechanisms in high speed machining of Ti-6Al-4V alloy with PCD tools under various coolant pressures,” J. Mater. Process. Technol., vol. 213, no. 8, pp. 1459–1464, 2013, doi: 10.1016/j.jmatprotec.2013.03.008.
[13] L. Özler, A. Inan, and C. Özel, “Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel,” Int. J. Mach. Tools Manuf., vol. 41, no. 2, pp. 163–172, 2001, doi: 10.1016/S0890-6955(00)00077-8.
DOI: https://doi.org/10.34238/tnu-jst.7949
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu