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1.
 
Introduction

Let H0 and H1 be real Hilbert spaces with nonempty closed convex subsets C and Q, respectively,
and F : H0 → H1 be a bounded linear mapping. The Split Feasibility Problem, proposed by Censor
and Elfving [1] in 1994, is stated as follows:

Find u ∈C such that Fu ∈ Q. (SFP)

Several recent studies [2] - [5] have shown that the (SFP) has numerous practical applications,
such as image recovery, signal processing, intensity-modulated radiation therapy and gene regulatory
network inference. The most influential method for solving (SFP) is CQ-algorithm presented by
Byrne [6] and considered in Hilbert spaces with a weak convergence result by Xu [7]. It starts with
an arbitrary initial guess x0 ∈ H0 and generates xk+1 according to the recursion process

xk+1 = PC(IH0 − γkF∗(IH1 −PQ)F)xk, k ≥ 0, (CQ)

where F∗ is the adjoint operator of F and γ is a properly chosen step size satisfying

0 < γk <
2

∥F∥2 . (γ1)

To remove the requirement of knowing ∥F∥ in (γ1), a self-adaptive step size criterion was applied
by Yang [8] and enhanced by López et al. [3] as follows

γk = ρk
∥(IH1 −PQ)Fwk∥2

∥F∗(IH1 −PQ)Fwk∥2 . (γ2)

Recently, several studies [9] - [15] have improved the CQ-algorithm to achieve strong conver-
gence in Hilbert spaces.

In the present article, we develop a new method for approximating the solution of the (SFP) in
Hilbert spaces, based on the CQ-algorithm of Byrne [6] and the self-adaptive step size of López
et al. [3], and using inertia technique and convex combinations. As a result, our method ensures
the strong convergence of the generated sequences, removes the requirement of knowing the norm
of transformation operators and enhances convergence speed. A numerical experiment in infinite-
dimensional space is given to compare it with the method of Nguyen et al. [9], supporting these
claims.

2.

 

Preliminaries

In this section, we introduce some mathematical symbols, definitions, and lemmas which can be
used in the proof of our main result.

Let H be a real Hilbert space with inner product ⟨., .⟩ and norm ∥.∥, and C be a nonempty,
closed and convex subset of H . In what follows, we write xk ⇀ x to indicate that the sequence {xk}
converges weakly to x while xk → x indicates that the sequence {xk} converges strongly to x. For
each x,y ∈ H , it is well known that

∥x+ y∥2 = ∥x∥2 + ∥y∥2 +2⟨x,y⟩ ≤ ∥x∥2 +2⟨y,x+y⟩. (1)
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.ContoH
is called the metric projection ofC→H:CP. The mappingC∈y,x∥ ∀u−x∥ ≤ ∥xCP−x∥satisfies

. This pointxCP, denoted byC, there exists a unique nearest point inH∈xFor every point
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Lemma 2.1 (see, [16]). (i) PCx ∈C for all x ∈ H, and if x ∈C, then PCx = x.
(ii) PC is a nonexpansive operator of H onto C, i.e., ∥PCx−PCy∥ ≤ ∥x−y∥ ∀x,y ∈C.

(iii) For given x ∈ H and y ∈C, y = PCx if and only if ⟨x− y,z− y⟩ ≤ 0 ∀z ∈C.

Let H0 and H1 be two real Hilbert spaces, and let F : H0 → H1 be a bounded linear operator. An
operator F∗ : H1 → H0, with the property ⟨Fx,y⟩= ⟨x,F∗y⟩ for all x ∈ H0 and y ∈ H1, is called an
adjoint operator of F . The adjoint operator of a bounded linear operator F on a Hilbert space always
exists and is uniquely determined. Furthermore, F∗ is a bounded linear operator.

Lemma 2.2 (see, [17]). Assume that T : C → H, with C is a closed and convex subset of a Hilbert
space H, is a nonexpansive mapping. Then the mapping IH −T is demiclosed on C; that is, whenever
{xk} is a sequence in C which weakly converges to some point u∗ ∈C, and the sequence {(IH −T )xk}
strongly converges to some y, it follows that (IH −T )u∗ = y.

From Lemma 2.2, if xk ⇀ u∗ , and (IH −T )xk → 0, then u∗ ∈ Fix(T).

Lemma 2.3 (see, [18]). Let {sk} be a real sequence, which does not decrease at infinity in the sense
that there exists a subsequence {skn} such that skn ≤ skn+1 ∀n ≥ 0. Define an integer sequence by
ν(k) := max

{
k0 ≤ n ≤ k | sn < sn+1

}
, k ≥ k0. Then ν(k)→ ∞ as k → ∞ and for all k ≥ k0, we have

max{sν (k), sk} ≤ sν(k)+1.

Lemma 2.4 (see, [7]). Let {sk} be a sequence of nonnegative numbers satisfying the condition
sk+1 ≤ (1 ck)sk+ ckbk for all k ≥ 0, where {ck} is a sequence in (0,1) such that ∑

∞

k=1 ck = ∞, and
{bk} is a sequence of real numbers with limsupk→∞ bk ≤ 0. Then, limk→∞ sk = 0.

3.

 

Main

 

Results

In this section, let H0 and H1 be real Hilbert spaces, let C ⊂ H0 and Q ⊂ H1 be nonempty closed
convex subsets. We investigate the (SFP) under the following conditions.
Assumption 3.1.

(A1) F : H0 → H1 is a bounded linear operator.
(A2) f : H0 → H0 is a contraction mapping with the contraction coefficient τ ∈ [0,1).
(A3) The solution set Ω of (SFP) is not empty.
Our algorithm can be expressed as follows.

Algorithm 1

Step 0. Select η ∈ (0,1) and the sequences {αk} such that the condition

{αk} ⊂ (0,1), lim
k→∞

αk = 0, and
∞

∑
k=1

αk = ∞, (α)

are satisfied. Let x0, x1 ∈ H0 be arbitrary. Set k := 1.
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are choosen satisfying}ke{and}kρ{with the sequences

)γ(,
ke+2∥kFw)QP−1HI(∗F∥

2∥kFw)QP−1HI(∥
kρ=kγ

is defined bykγ, where the step sizekFw)QP−1HI(∗Fkγ−kw=kyComputeStep 2.

)θ(.0=∥1−kx−kx∥
kα

kθ

∞→k
lim,)1,0[} ⊂kθ{

is defined bykθ, where the inertia)1−kx−kx(kθ+kx=kwComputeStep 1.

)ρ(.)∞,0(} ⊂ke{,)2,0(} ⊂kρ{
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Step 3. Compute zk = (1−η)yk +ηPCyk.
Step 4. Compute xk+1 = αk f (xk)+(1−αk)zk.
Step 5. Set k := k+ 1 and go to Step 1.

Remark 3.1. It is easy to see that the condition limk→∞
θk
αk
∥xk −xk−1∥= 0 of (θ ) can be implemented

easily in the numerical computation as the value of ∥xk −xk−1∥ is known before choosing θk. Indeed,
the parameter θk can be chosen such that

θk =

 min
{

ηk
∥xk−xk−1∥ ,θ

}
, if xk ̸= xk−1,

θ , otherwise,
(θk)

where θ is a constant such that 0 < θ < 1 and {ηk} is a positive sequence such that limk→∞
ηk
αk

= 0.

Lemma 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Let {zk} be a sequence
generated by Algorithm 1. Then, for all u ∈ Ω,

∥zk − u∥2 ≤ ∥wk −u∥2 − γk(2−ρk)
∥∥(IH1 −PQ)Fwk

∥∥2 −η(1−η)
∥∥(IH0 −PC)yk

∥∥2
.

Proof. Since Fu ∈ Q, from Lemma 2.1(iii), we have that

∥yk −u∥2 = ∥wk − γkF∗(IH1 −PQ)Fwk −u∥2

= ∥wk − u∥2 +γ
2
k ∥F∗(IH1 −PQ)Fwk∥2 −2γk⟨Fwk −Fu,Fwk −PQFwk⟩

= ∥wk − u∥2 +γ
2
k ∥F∗(IH1 −PQ)Fwk∥2 −2γk∥Fwk −PQFwk∥2 +2γk⟨PQFwk −Fu,Fwk −PQFwk⟩

≤ ∥wk − u∥2 −γk(2− γk∥F∥2)∥(IH1 −PQ)Fwk∥2 ≤ ∥wk −u∥2 − γk(2−ρk)∥(IH1 −PQ)Fwk∥2.
(2)

Since u ∈C, from the nonexpansive property of PC, we have:

∥yk −u∥2 ≥ ∥PCyk − u∥2 = ∥PCyk − yk∥2 +∥yk −u∥2 +2⟨yk − u,PCyk − yk⟩

⇔ ⟨yk −u,(IH0 −PC)yk⟩ ≥
1
2
∥(IH0 −PC)yk∥2.

(3)

From (2) and (3), we obtain:
∥zk −u∥2 = ∥(1−η)yk+ηPCyk − u∥2 ≤ ∥yk −u∥2 −η(1−η)∥(IH0 −PC)yk∥2

≤ ∥wk −u∥2 − γk(2−ρk)∥(IH1 −PQ)Fwk∥2 −η(1−η)∥(IH0 −PC)yk∥2.
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−

−

, we have:)1,0[∈τ

with the contraction coefficientfand the contraction property of)1M(,3.1From Lemma

)1M(.N∈k∀1M∥ ≤1−kx−kx∥
kα

kθ

0 such that>1M), there exitsθ. Since (Ω∈uLetProof.
is bounded.1generated by Algorithm

}kx{are satisfied. Then, the sequence3.1Suppose that all conditions in AssumptionLemma 3.2.

is bounded.}kx{This implies that the sequence

.

}
τ−1

1M+∥u−)u(f∥
,∥u−0x∥

{
max≤ ·· · ≤

}
τ−1

1M+∥u−)u(f∥
,∥u−kx∥

{
max≤

τ−1
1M+∥u−)u(f∥

)τ−1(kα+∥u−kx∥)]τ−1(kα−1[≤

)1Mkα+∥u−kx∥)(kα−1+(∥u−)u(f∥kα+∥u−kx∥τkα≤
∥u−kz∥)kα−1+(∥u−)u(f∥kα+∥)u(f−)kx(f∥kα∥ ≤u−1+kx⇒∥

1Mkα+∥u−kx∥ ≤ ∥)1kx−kx(
kα

kθ
kα+u−kx∥ ≤ ∥u−kw∥ ≤ ∥u−kz∥ −
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Lemma 3.3. Suppose that all conditions in Assumption 3.1 are satisfied. Let {xk} be a sequence
generated by Algorithm 1. Then, for all u ∈ Ω,

∥xk+1− u∥2 ≤ (1− ck)∥xk −u∥2 + ckbk,

where ck = αk(1− τ2), and bk =
(1−αk)θk
(1 τ2)αk

∥xk − xk−1∥M2 +
2

1 τ2 ⟨ f (u)− u,xk+1 − u⟩, with M2 =

supk≥1{2∥xk −u∥+αkM1}, M1 > 0 such that θk
αk
∥xk − xk 1∥ ≤ M1 for all k ∈N.

Proof. From the definition of M2, we have:

∥wk −u∥2 ≤ ∥xk −u∥2 +θ
2
k ∥xk − xk−1∥2 +2θk∥xk − u∥∥xk −xk−1∥

≤ ∥xk −u∥2 +θk∥xk − xk−1∥M2. (4)

It follows from Lemma 3.1, (1), (4) and the convexity of ∥ · ∥2 that

∥xk+1

−

u∥2 = ∥αk
(

f (xk) f (u)
)
+(1 αk)(zk u)+αk ( f (u) u)∥2

≤αk∥ f (xk)− f (u)∥2 +(1−αk)∥(zk −u)∥2 +2αk⟨ f (u)−u,xk+1−u⟩

≤αkτ
2∥xk−u∥2 +(1−αk)

[
∥wk−u∥2− γk(2−ρk)

∥∥(IH1−PQ)Fwk∥∥2−η(1−η)
∥∥(IH0−PC)yk∥∥2

]
+2αk⟨ f (u)−u,xk+1− u⟩

=(1− ck)∥xk− u∥2+ ck

[
bk −

1−αk

(1−τ2)αk

(
γk(2−ρk)

∥∥(IH1−PQ)Fwk
∥∥2
+η(1−η)

∥∥(IH0−PC)yk
∥∥2
)]

≤(1− ck)∥xk −u∥2 + ckbk.

Theorem 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Then, the sequence {xk}
generated by Algorithm 1 converges strongly to the unique solution u∗ of the VIP(IH0− f, Ω), which
is the u∗ ∈ Ω satisfying

〈
(IH0− f )u∗,u−u∗〉≥ 0 for all u ∈ Ω.
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−
− −

− − −−

.2M1Mkα)kα−1+(2∥∗u−1+kx−∥2∥∗u

−

kx∥)kα−1+(2∥∗u−)kx(f∥kα≤

]2∥∥ky)CP−0HI(∥∥)η−1(η+
2∥∥kFw)QP−1HI(∥∥)kρ−2(kγ

[
)kα−1(⇔

]2∥∥ky)CP0HI(∥∥)η1(η+
2∥∥kFw)QP1HI(∥∥)kρ2(kγ

[
)kα1(

)
2M∥1−kx−kx∥kθ+2∥∗u−kx∥

(
)kα−1+(2∥∗u−)kx(f∥kα≤

2∥∗u−kz∥)kα−1+(2∥∗u−)kx(f∥kα≤2∥)∗u−kz)(kα−1+(
)∗u−)kx(f

(
kα∥=2∥∗u−1+kx∥

, we get that2∥ · ∥) and the convexity of4, (3.1exists. From Lemma∥∗u−kx∥∞→klim
. Then,0k≥kfor all∥∗u−kx∥ ≤ ∥∗u−1+kx∥such that0≥0kThere exists an integerCase 1.

0 by considering two possible cases.=∥∗u−kx∥∞→k. We will show lim∗ube replaced by
in all preceding lemmas and proofsu). Let theΩ,f−0HIis the unique solution to the VIP(∗uobtain

, we)iii(2.1. By Lemma∗u) =∗u(fΩPsuch thatΩ∈∗umapping principle, there exists unique point
is a contraction too. By Banach contractionfΩPis a contraction mapping,fSinceProof.

− − −

−

−

(5).0=∥∥ky)CP−0HI(∥∥
∞→k

lim=∥∥kFw)QP−1HI(∥∥
∞→k

lim

, it follows from the above inequality that
)

2∥F∥
2,0

(
∈kγ

and)2,0(∈kρ,)1,0(∈η,0=kα∞→klimis bounded,})kx(f{exists,∥∗u−kx∥∞→klimSince
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the above inequality that:
, it follows from0=∥1−)k(vx)kvx∥

)k(vα

k(vθ

∞→klimand
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 From (5), the definition of {θk} and the boundedness of {xk} and { f (xk)}, we have:
 ∥wk − xk∥ = 

∥∥αk α

θk

k 
(xk − xk−1)∥∥ → 0 as k → ∞,  

∥yk − wk∥ ≤ γk∥F∥
∥∥(IH1 − PQ)Fwk∥∥ → 0 as k → ∞, (6)

 ∥zk − yk∥ = η ∥(IH0 − PC)yk∥ → 0 as k → ∞. 

 ⇒ ∥zk − xk∥ ≤ ∥zk − yk∥ + ∥yk − wk∥ + ∥wk − xk∥ → 0 as k → ∞ 

 ⇒ ∥xk+1 − xk∥ ≤ αk∥ f (xk) − xk∥ + (1 − αk)∥zk − xk∥ → 0 as k → ∞. (7) 

 Suppose that {xkl } is a subsequence of {xk} such that 

 lim sup⟨ f (u∗) − u∗, xk − u∗⟩ = lim ⟨ f (u∗) − u∗,xkl − u∗⟩. (8)
 k→∞ kl→∞ 

 Since {xkl } is bounded, there exits a subsequence {xklm } of {xkl } which converges weakly 
 to some point û. Without loss of generality, we may assume that xkl ⇀ û. From (6), we get 
 that limkl→∞ ∥ykl − xkl ∥ = 0, which implies that ykl ⇀ û. Then, from Lemma 2.2 and (5), we 
 obtain û ∈ Fix(PC), showing that û ∈ C. Moreover, since F is a bounded linear operator and 
 limkl→∞ ∥ykl − wkl ∥ = 0, Fwkl ⇀ F û. Using Lemma 2.2 and (5) again, we also obtain F û ∈ Q, 
 implying that û ∈ Ω. Therefore, since u∗ = PΩ f (u∗), we deduce from Lemma 2.1(iii), (7) and (8) 
 that 

 lim sup
〈 

f (u∗)−u∗,xk+1− u∗
〉
= lim sup 

〈 
f (u∗)−u∗, xk− u∗

〉 
= 
〈 

f (u∗)−PΩ f (u∗), û−PΩ f (u∗)
〉 
≤ 0. 

 k→∞ k→∞ 

 It follows from the above inequality and the definition of {bk} that lim supk→∞ bk ≤ 0. Moreover, 
from the definition of {ck}, we obtain {ck} ⊂ (0, 1) and ∑

∞

k=1 ck = ∞. Finally, from Lemma 2.4 and 
Lemma 3.3, we deduce that limk→∞ ∥xk − u∗∥ = 0. 

 0 ) (=)k(vα∞→klimis bounded,})k(vx{Since

.)k(vb)k(vc+)k(vc≤−2∥∗u)k(vx−∥2∥∗u1)+k(vx≤ ∥0

, we have:)k(vreplaced bykwith3.30. From Lemma≥kfor each∥∗u−1)+k(vx∥
∥ ≤∗u−kx∥and∥∗u−1)+k(vx∥ ≤ ∥∗u−)k(vx∥,∞→kas∞→)k(vlarge enough) such that0ksome
(for0k≥kfor})k(v{, there exists an integer, nondecreasing sequence2.3. Hence, by Lemma0≥l

for all∥∗u−1+lkx∥<∥∗u−lkx∥such that}k{of}lk{There exists a subsequenceCase 2.

−

−−

(9).0=
)

2∥∗u−)k(vx−∥2∥∗u−1)+k(vx∥
(

∞→k
lim

0. This complete the proof.=2∥∗u−kx∥∞→kwe get lim
,∥∗u−1)+k(vx∥ ≤ ∥∗u−kx∥. Hence, since0=2∥∗u−1)+k(vx∥∞→klimthat)9(which together with
,0=2∥∗u−)k(vx∥∞→klim. Therefore, we have that0⟩ ≤∗u−1)+k(vx,∗u−)∗u(f⟨∞→klimsupwhere

,⟩∗u−1)+k(vx,∗u−)∗u(f⟨2+2M∥1−)k(vx−)k(vx∥
)k(vα

)k(vθ
))k(vα−1(≤2∥∗u−)k(vx∥)2

τ−1(⇒

⟩∗u−1)+k(vx,∗u−)∗u(f⟨)k(vα2+2M∥1−)k(vx−)k(vx∥)k(vθ))k(vα−1+(

2∥∗u−)k(vx∥
)
)2

τ−1()k(vα−1
(

≤2∥∗u−1)+k(vx∥ ≤ ∥∗u−)k(vx∥

Also we get.0=∥∥)k(vy)CP−0HI(∥∥∞→klim
=∥∥)k(vFw)QP−1HI(∥∥∞→klimUsing the above equality, by similar argument to Case 1, we obtain:
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Example 3.1. A numerical experiment on infinite-dimensional spaces is given to illustrate the
effectiveness of our method and compare it with [9]. The computations were performed using Python
on a Dell Latitude E6540 laptop with an Intel Core i7-4800MQ @ 2.70 GHz processor and 16 GB of
RAM.

Let H0 = H1 = (l2, ∥ · ∥l2), where l2 :=
{

x = (x1,x2,x3, . . .), xi ∈ R : ∑
∞
i=1 x2

i < ∞
}

and ∥x∥l2 :=
(∑∞

i=1 x2
i )

1
2 ∀x ∈ l2. Let C = {x ∈ l2 : ∥x − (1,0,0,0, . . . )∥ ≤ 1} ∈ H0 and Q = {y ∈ l2 : ∥y−

(−1,0,0,0, . . .)∥ ≤ 3} ∈ H1. The bounded linear operator F : H0 → H1 and the contraction op-
erator f : H0 → H0 are determined by Fx = 2

3x and f (x) = 1
20x for all x ∈ l2. Then, we have a

VIP(IH0− f, Ω). In theory, both Algorithm 1 and the algorithm of Nguyen et al. [9] strongly converge
to the solution of this problem, which is the sequence (0,0,0, . . .).

For convenience, we denote Algorithm 1 by Current Alg., and the algorithm of Nguyen et al. [9]
by Alg. of Nguyen. The stopping criteria is that ∥xk −u∗∥ ≤ ε , where ε is a chosen tolerance. The
initial values and parameters of these methods are chosen as follows

• Case 1: x0 = 1
2 x1 = ( 50

12 ,
50
22 ,

50
32 , . . .),

– The Alg. of Nguyen: β = 0.54,αk =
1

k+51 ,ρk = 0.1,κk = 5, where k = 1,2,3, . . . .

– Current Alg.: η = 0.54,αk =
1

k+51 ,ρk = 0.1,ek =5,θk satisfies (θk) with θ = 0.44 and ηk =
1

(k+51)1.1 , where k = 1,2,3, . . . .

• Case 2: x0 = 3x1 = (120
11.5 ,

120
21.5 ,

120
31.5 , . . .),
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3336 75) 182841 5578kIter. (
1.328234 0.064960Time (s) 93.946898 5.4688493−10

287 29) 16151 1399kIter. (
0.197886 0.022983Time (s) 8.218267 1.328235210

26 5) 1385 324kIter. (
0.012992 0.003998Time (s) 0.788546 0.4197581−10

Alg. of Nguyen Current Alg.Alg. of Nguyen Current Alg.ε

Case 2Case 1

parametersandvaluesinitialofcasestwoinalgorithmstwoforresultsNumerical1.Table

−

time and the number of iterations, especially as the tolerance decreases.
, demonstrating that our algorithm significantly outperforms theirs in both execution1shown in Table

]. The results are9algorithm to achieve greater efficiency than the algorithm of Nguyen and Tran [
Since both algorithms use similar initial values and parameters, adjusting the inertia enables our

., . . .3,2,1=kwhere,01.1k
1

=kη95 and.0=θ) withkθsatisfies (kθ,2=ke,5.0=kρ,k
1=kα,71.0=ηCurrent Alg.:–

., . . .3,2,1=kwhere,2=kκ,5.0=kρ,k
1=kα,71.0=βThe Alg. of Nguyen:–
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4.

 

Conclusion

In this paper, we have described an iterative method (Algorithm 3) for approximating the split
feasibility problem (SFP) in real Hilbert spaces, based on the CQ-algorithm of Byrne and the self-
adaptive step size of López et al., and using inertia technique and convex combinations. By effectively
incorporating convex combinations into the algorithm, we have proved the strong convergence results
of the suggested method with variable step size under mild conditions on the control parameters
(Theorem 3.1). The application of the inertial technique has improved the convergence speed of our
method, outperforming a related one in both execution time and the number of iterations, especially
as the tolerance decreases, as demonstrated by a numerical experiment in infinite-dimensional space
(Example 3.1). Furthermore, the ability to solve a class of variational inequality problems over the
solution set of the split feasibility problem has expanded the practical applicability of our method.
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