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1. Introduction

Let Hy and H; be real Hilbert spaces with nonempty closed convex subsets C and Q, respectively,
and F' : Hy — H; be a bounded linear mapping. The Split Feasibility Problem, proposed by Censor
and Elfving [1] in 1994, is stated as follows:

Find u € C such that Fu € Q. (SFP)

Several recent studies [2] - [S] have shown that the (SFP) has numerous practical applications,
such as image recovery, signal processing, intensity-modulated radiation therapy and gene regulatory
network inference. The most influential method for solving (SFP) is CQ-algorithm presented by
Byrne [6] and considered in Hilbert spaces with a weak convergence result by Xu [7]. It starts with

k+1

an arbitrary initial guess x” € Hy and generates x**! according to the recursion process

K = Po(I — y (I — Pp)F)x*, k>0, (CQ)
where F™* is the adjoint operator of F and 7 is a properly chosen step size satisfying

0<n< (YD)

2
IF|1>
To remove the requirement of knowing || F|| in (1), a self-adaptive step size criterion was applied
by Yang [8] and enhanced by Lépez et al. [3] as follows
(11 — Po) Fwr|®
|1 — Po) Fw||>

Y = Px (v2)
Recently, several studies [9] - [15] have improved the CQ-algorithm to achieve strong conver-

gence in Hilbert spaces.
In the present article, we develop a new method for approximating the solution of the (SFP) in

Hilbert spaces, based on the CQ-algorithm of Byrne [6] and the self-adaptive step size of Lopez
et al. [3], and using inertia technique and convex combinations. As a result, our method ensures
the strong convergence of the generated sequences, removes the requirement of knowing the norm
of transformation operators and enhances convergence speed. A numerical experiment in infinite-
dimensional space is given to compare it with the method of Nguyen et al. [9], supporting these
claims.

2. Preliminaries

In this section, we introduce some mathematical symbols, definitions, and lemmas which can be
used in the proof of our main result.

Let H be a real Hilbert space with inner product (.,.) and norm ||.

, and C be a nonempty,
closed and convex subset of H. In what follows, we write x* — x to indicate that the sequence {x*}
converges weakly to x while x* — x indicates that the sequence {x*} converges strongly to x. For
each x,y € H, it is well known that

et y112 = el 4 912 +20x,3) < [Ixl> +20,x+).- ()

For every point x € H, there exists a unique nearest point in C, denoted by Pcx. This point
satisfies ||x — Pex|| < |[x —u]| Vx,y € C. The mapping Pc: H — C is called the metric projection of
H onto C.
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Lemma 2.1 (see, [16]). (i) Pex € C forall x € H, and if x € C, then Pcx = x.
(if) Pc is a nonexpansive operator of H onto C, i.e., |Pcx — Pcy|| < ||x—y|| Vx,y € C.
(iii) For givenx € Handy € C, y= Pexifand only if (x—y,z—y) <0VzeC.

Let Hp and H; be two real Hilbert spaces, and let F': Hy — H; be a bounded linear operator. An
operator F*: Hy — Hy, with the property (Fx,y) = (x,F*y) for allx € Hy and y € H}, is called an
adjoint operator of F. The adjoint operator of a bounded linear operator F' on a Hilbert space always
exists and is uniquely determined. Furthermore, F* is a bounded linear operator.

Lemma 2.2 (see, [17]). Assume that T : C — H, with C is a closed and convex subset of a Hilbert
space H, is a nonexpansive mapping. Then the mapping I'' — T is demiclosed on C; that is, whenever
{x} is a sequence in C which weakly converges to some point u* € C, and the sequence { (I —T)x*}
strongly converges to some y, it follows that (I —T)u* = y.
From Lemma 2.2, if x* — u*, and (I — T)x* — 0, then u* € Fix(T).

Lemma 2.3 (see, [18]). Let {si} be a real sequence, which does not decrease at infinity in the sense
that there exists a subsequence {sy, } such that sy, < sy, +1 Vn > 0. Define an integer sequence by
v(k) :=max {ko <n<k|s, <Sp1}, k>ko. Then v(k) — co as k — oo and for all k > ko, we have
max{sy k), Sk} < Sy(r)1-

Lemma 2.4 (see, [7]). Let {si} be a sequence of nonnegative numbers satisfying the condition
Skr1 < (1 = cx)sk+ ckby for all k > 0, where {cx} is a sequence in (0,1) such that Yy, cj = oo, and
{bi} is a sequence of real numbers with limsup,_,., by < 0. Then, limy_,c. 55, = 0.

3. Main Results

In this section, let Hy and H; be real Hilbert spaces, let C C Hy and Q C H; be nonempty closed
convex subsets. We investigate the (SFP) under the following conditions.
Assumption 3.1.

(A1) F: Hy — H; is a bounded linear operator.

(A2) f: Ho— Hy is a contraction mapping with the contraction coefficient 7 € [0, 1).

(A3) The solution set Q of (SFP) is not empty.

Our algorithm can be expressed as follows.

Algorithm 1

Step 0. Select ) € (0, 1) and the sequences {ay} such that the condition
{og} C (0,1), lim oy =0, and ) oy =oo, (@)
. 1 . koo k=1
are satisfied. Let x°, x! € Hy be arbitrary. Set k := 1.

Step 1. Compute w* = x* 4 6;(x* —x*~1), where the inertia 6; is defined by
6
{6} € [0,1), lim =<l —x*~1[| = 0. (6)
k—o0 O

Step 2. Compute y* = wk — 3 F* (I — Pp) Fw*, where the step size ¥ is defined by
(1™ — Po) FWH|?

with the sequences {p;} and {e;} are choosen satisfying
{pc} ©(0,2), {ex} € (0,00). (P)
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Step 3. Compute 7 = (1 —n)y* + nPcyk.
Step 4. Compute x*™! = oy f(x*) + (1 — o)z~
Step 5. Setk :=k—+1 and go to Step 1.

Remark 3.1. It is easy to see that the condition limy_;. % [k —x*~1|| = 0 of () can be implemented
easily in the numerical computation as the value of ||x* —x* || is known before choosing 6. Indeed,
the parameter 6, can be chosen such that

0 _{mln{#}’c‘k_—ll,e}, ika#xk_l,

e =
L 0, otherwise,

(6c)

where 0 is a constant such that 0 < 6 < 1 and {n} is a positive sequence such that limy_, g—’k‘ =0.

Lemma 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Let {7} be a sequence
generated by Algorithm 1. Then, for all u € Q,
2 2
12— ull® < Iw* —u|® = %2 = pi) |1 = Po) FWH||" = (1 —m) [| (1" — Pe)y*| "
Proof. Since Fu € Q, from Lemma 2.1(iii), we have that
Iy —ul® = W= nF (1™ — Po)Fw* — ul?
= ||wk —ul|® + 7 ||F* (I — Bp) Fw||* = 2% (FWK — Fu, Fw* — PoFw*)
= ||w* —u||> + Z|F* (I — Po) FWK||* — 2 ||[Fw* — PoFw¥ || 4+ 2y (Po Fwr — Fu, Fwk — PoFwk)
2
< I = ull? = @ = D) 0™~ P) P < [lwh —ull? — (2= pol| (1 — B)FwH 2. @

Since u € C, from the nonexpansive property of P¢c, we have:
IV =l > Py — > = [[Pey* =y 1P + IV —ull® + 20" — u, Pey* — ")

& Of (1 — o)) > 5 (1% — PP
From (2) and (3), we obtain:
I —ull* = 01— )t + Bt — < I =l (1 =m0 — e
< Ik —ulP = (2= | — P)FWHIP — (1= )| %0 — P

3

Lemma 3.2. Suppose that all conditions in Assumption 3.1 are satisfied. Then, the sequence {x*}

generated by Algorithm 1 is bounded.
Proof. Let u € Q. Since (0), there exits M; > 0 such that

6
ol = <y vkeN. (M)
k
From Lemma 3.1, (M;) and the contraction property of f with the contraction coefficient
7€ [0,1), we have: 0
k _
12 —ul| < [lw* —ul] < [|¥* —u+ ak;k(xk—xk DI < (1 =l + oMy

= [ =l < ol f () = f ()l + euell f () =l + (1 = )| —
< ot — ul| + o £ (1) — | + (1 = ) (|5 = ]| + oMy

LS () = ul + M,

< [1=en(1 = D] I —ull + eu(1 = 2) 2 =——

1/ () —uf +M1}

1—71

gmax{]\xk—uﬂ §~--§max{||x0—u|

L)l 434,

1-7
This implies that the sequence {x*} is bounded.
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Lemma 3.3. Suppose that all conditions in Assumption 3.1 are satisfied. Let {x*} be a sequence
generated by Algorithm 1. Then, for all u € Q,

=l < (1= i) I —ul* + exbr,

where ¢, = o4 (1 — 12), and by = ((i%:‘z"))%”xk — x|\ Mo+ %g(f(u) — u, XK —u), with My =
supes1{2[]x* —ul| + M1}, My > 0 such that g—’; |k — xk7Y| < M, for all k € N.
Proof. From the definition of M;, we have:
IWF =] < [l = > O =P 4 26 [ — ] [lx* — x|
< ||xF = w2 + O] — x| M. 4)
It follows from Lemma 3.1, (1), (4) and the convexity of || - || that
I — ul|? = lou (f () = () + (1 =) (& w)+ o (f () —u) |
<oyl F() = £+ (1= 0w |2 =) |[* + 200 () —u, 1 =)
2 2
<oyt | —ul?+ (1 —Oik){HWk—MHz—?’k(Z—Pk) [(17 = Po) Fw || = (1 —n) | (170 — Pe)y| ]
+ 204 (f(u) —u, X1 — u)

= (1) =+ e [bk - e (m2=p0 [0 = PP P (1) H(IHO—PCW"Hz)]

< (1 —Ck)H)J( —MHz—f-Ckbk.

Theorem 3.1. Suppose that all conditions in Assumption 3.1 are satisfied. Then, the sequence {x*}
generated by Algorithm 1 converges strongly to the unique solution u* of the VIP(I"o — f, Q), which
is the u* € Q satisfying <(IH0—f)u*,u —u*> >0 foralluec Q.

Proof. Since f is a contraction mapping, Pof is a contraction too. By Banach contraction
mapping principle, there exists unique point u* € Q such that Po f (u*) = u*. By Lemma 2.1(iii), we
obtain u* is the unique solution to the VIP(I#0 — f, Q). Let the u in all preceding lemmas and proofs
be replaced by u*. We will show lim .. |[x* — u*|| = 0 by considering two possible cases.

Case 1. There exists an integer ko > 0 such that |[x**! — u*|| < ||x* — u*|| for all k > k. Then,
limy_,., ||x* — u*|| exists. From Lemma 3.1, (4) and the convexity of || - ||, we get that
I — a2 = e (F() — ) + (1 — o) (& — )P < oL F0%) — u* |+ (1 — )1 — |
< oL F () = u [P (1= o) (I = " |+ B[ — 21 2)
(1= o) [1(2 = pe) || (17 = Bo)Fw*|[* 4 m(1 =) || (10— Pe) ]
& (1= o) [1(2 = p) | (1 = Po) || +-m (1= m) [[ (1" — o) ||
< ol ) =P (1= o) o = [P = [ =2 4 (1 = o) oy My M.

Since limy_. ||x* —u*|| exists, {f(x¥)} is bounded, lim; .0 =0, n € (0,1), px € (0,2) and
Y € <0, ﬁ), it follows from the above inequality that

lim || (I"" — Pp) Fw| = lim | (1" — Pc)y*|| = 0. (5)
—yo0

k—>o0
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From (5), the definition of {6;} and the boundedness of {x*} and { f(x*)}, we have:

x| = 0ask — oo,

0
k)= g
Iy — wh|| < | F ||| (11 — Po)Fwk|| = 0 as k — oo, 6)
| = || = n || (10 — Pe)y*|| — 0 as k — .
= [l = 2| < | =y + Iy = wh] + [wk — x| = 0 ask — oo

= [ =) < ol f ) =+ (1= ) =] = 0 as k— oo, 0

Suppose that {x} is a subsequence of {x*} such that
limsup( f(u*) — u*,x* —u*) = lim (f(u*) —u*,x" —u*). ®)
koo kyj—roo
Since {x¥} is bounded, there exits a subsequence {x*m} of {x*} which converges weakly
to some point 4. Without loss of generality, we may assume that X — 7. From (6), we get
that limy, . [y — 27| = 0, which implies that y¥ — 7i. Then, from Lemma 2.2 and (5), we
obtain 4 € Fix(P¢), showing that # € C. Moreover, since F is a bounded linear operator and
limy, 0 [[y¥ —wh|| = 0, Fwk — Fi. Using Lemma 2.2 and (5) again, we also obtain Fii € Q,
implying that i € Q. Therefore, since u™ = Pof(u*), we deduce from Lemma 2.1(iii), (7) and (8)
that
limsup<f(u*)—u*,xk+1— u*)=limsup ( f(u*)—u*, X"~ u*) = (f (u*)—Pof (u*),id—Pof (u*)) <O.
k—soo k—>o0
It follows from the above inequality and the definition of {b;} that limsup,_,., by < 0. Moreover,

from the definition of {¢; }, we obtain {c;} C (0,1) and Y}, cx = . Finally, from Lemma 2.4 and
Lemma 3.3, we deduce that limy_,.. ||x* — u*|| = 0.

Case 2. There exists a subsequence {k;} of {k} such that ||x — u*|| < ||x}1*! —u*|| for all
[ > 0. Hence, by Lemma 2.3, there exists an integer, nondecreasing sequence {v(k)} for k > ko (for
some kg large enough) such that v(k) — co as k — oo, ||x"®) — || < ||x"®)*1 — *|| and ||x* — u*|| <
[x"®)+1 —3*|| for each k > 0. From Lemma 3.3 with k replaced by v(k), we have:
0 < [0 _a 2 — ) )2 < = Cy(k) T oy by(r)-

Since {x*®} is bounded, lim;_,. (k) = 0 and limy ., %?)Hxv(k) — x’M=1| = 0, it follows from

the above inequality that:
lim (Hxv(k)ﬂ—u*Hz—Hxv(k) _M*H2> —0. )
k—yoo0
Using the above equality, by similar argument to Case 1, we obtain: lim;_. . H (I — Py)F w(k) H =
limg_. H (IH0 —Pc)yv(k) H = (0. Also we get
0 = < B =P < (1=t (1 22) [ |
+ (1= o) By 2™ =" O [[My + 200,y (f () — e 20T — )

6,
= (1= )0 P < (1 - o)

v(k

Hxv(k) _xv(k)fl HMZ —|—2<f(u*) N u*,xv(k)+1 - I/t*>,

where limsup, ... (f(u*) —u*,x"®+!1 —y*) < 0. Therefore, we have that limy_., ||x"*) — u*||> = 0,
which together with (9) that limy_,. [|x"®+! —*||? = 0. Hence, since ||x¥ — u*|| < [|x*0+1 — ||,
we get limy_,o. [|X* — u*||> = 0. This complete the proof.
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Example 3.1. A numerical experiment on infinite-dimensional spaces is given to illustrate the
effectiveness of our method and compare it with [9]. The computations were performed using Python

on a Dell Latitude E6540 laptop with an Intel Core i17-4800MQ @ 2.70 GHz processor and 16 GB of
RAM.

Let Hy=H; = (I || - ||2), where > := {x = (x1,x2,x3,...), x; € R: ¥ x? < oo} and ||x]| 2 :=
( f":lxlz)% Vx € 2. Let C = {xe?: ||x—(1,0,0,0,...)]| <1} € Hy and Q = {y € I*: |ly—
(—1,0,0,0,...)|| <3} € H;. The bounded linear operator F: Hy— H; and the contraction op-
erator f: Hy — Hy are determined by Fx = %x and f(x) = ziox for all x € [?. Then, we have a

VIP(IHo — £, Q). In theory, both Algorithm 1 and the algorithm of Nguyen et al. [9] strongly converge
to the solution of this problem, which is the sequence (0,0,0,...).

For convenience, we denote Algorithm 1 by Current Alg., and the algorithm of Nguyen et al. [9]

by Alg. of Nguyen. The stopping criteria is that ||x* —u*| < &, where € is a chosen tolerance. The
initial values and parameters of these methods are chosen as follows

.0 _ 1.1 _ (50 50 50
« Case I: x" = 7x' = (37,92, 325-+-)>

— The Alg. of Nguyen: B =0.54,04 = -'s7,p¢ = 0.1,k =5, where k=1,2,3,....
— Current Alg.: 1 =0.54, 04, = ﬁlﬂ,l)k =0.1,¢, =5, 6, satisfies (6;) with 0 = 0.44 and 1, =
m, where k=1,2,3,....

.40 1 _ (120 120 120
* Case 2: x° =3x —(I]ﬁ,ﬁ,ﬁw..),

Table 1. Numerical results for two algorithms in two cases of initial values and parameters

Case 1 Case 2
£ Alg. of Nguyen Current Alg. Alg. of Nguyen Current Alg.

10! Time (s) 0.788546 0.419758 0.012992 0.003998
Iter. (k) 1385 324 26 5

10-2 Time (s) 8.218267 1.328235 0.197886 0.022983
Iter. (k) 16151 1399 287 29

10-3 Time (s) 93.946898 5.468849 1.328234 0.064960
Iter. (k) 182841 5578 3336 75

— The Alg. of Nguyen:  =0.71, 0 = ¢,px = 0.5,k = 2, where k=1,2,3,....

— Current Alg.: n=0.71,04 = %,pk =0.5,¢; =2, 6, satisfies (0;) with 6 =0.95 and 1, =
or» Where k = 1,2,3

PP RC PRI

Since both algorithms use similar initial values and parameters, adjusting the inertia enables our
algorithm to achieve greater efficiency than the algorithm of Nguyen and Tran [9]. The results are
shown in Table 1, demonstrating that our algorithm significantly outperforms theirs in both execution
time and the number of iterations, especially as the tolerance decreases.
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4. Conclusion

In this paper, we have described an iterative method (Algorithm 3) for approximating the split
feasibility problem (SFP) in real Hilbert spaces, based on the CQ-algorithm of Byrne and the self-
adaptive step size of Lépez et al., and using inertia technique and convex combinations. By effectively
incorporating convex combinations into the algorithm, we have proved the strong convergence results
of the suggested method with variable step size under mild conditions on the control parameters
(Theorem 3.1). The application of the inertial technique has improved the convergence speed of our
method, outperforming a related one in both execution time and the number of iterations, especially
as the tolerance decreases, as demonstrated by a numerical experiment in infinite-dimensional space
(Example 3.1). Furthermore, the ability to solve a class of variational inequality problems over the
solution set of the split feasibility problem has expanded the practical applicability of our method.
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