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This paper proposes the determination of the solution of a single-degree-
of-freedom nonlinear system. The contents of the paper are to calculate
the natural frequencies of the nonlinear system using three methods.
They are the method of direct integration of the differential equation, the
method based directly on the numerical calculation results and the
method of using the weighted average function. This paper used the least
square criterion to evaluate the error between the numerical methods and
the proposed methods. The results obtained are the exact natural
frequencies and the frequencies according to the proposed methods.
Along with the frequency calculation results, the paper also obtained the
solutions as approximate analytical expressions. From obtained results, it
can be seen that the errors between the solutions according to the
numerical method and the solution according to the proposed methods
are very small. The weighted average method to determine the solution
of the nonlinear differential equation revealed that this is an approach
with many advantages. The weighted average method can be easy to
apply to the calculation and obtain results with high reliability.
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Phi tuyén

Trung binh trong s6
Phuong phap s6

Tén s6 dao dong
Binh phuong ti thiéu

Bai bao nay dé€ xuat viéc xdc dinh nghiém cua hé phi tuyén mot béc tu
do. N6i dung bai bao 1 tinh toan tan sb dao dong riéng cua hé phi tuyén
bang ba phuong phap: Do 1a, phuong phép tich phan truc tiép phuong
trinh vi phén, phuong phap dua truc tiép vao ket qua tinh toan so va
phuong phap str dung ham trung binh c6 trong s0. Bai bao da su dung
tiéu chuan binh phuong t01 thiéu dé danh gia sai sb gitra phuong phap
so va phuong phap dé xuat. Ket qua nhan duoc 1a tan sb chinh xac va
tan s6 theo phuong phap dé xuat. Cung véi két qua tinh todn tan so, bai
béo ciing nhan dugc nghiém 1a biéu thirc giai tich gan ding. Tir két qua
d6, nhan thay sai s6 giira nghiém theo phuong phap sb va nghiém theo
phuong phép dé xuat 1a rat nho. Ung dung phuong phap trung binh co6
trong so dé xéc dinh nghiém cua phuong trinh vi phan phi tuyén cho
thdy day 1a cach tiép can c6 nhidu wu diém vi su d& dang van dung vao
tinh toan, dong thoi két qua nhén duoc co do tin cdy cao.
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1. Introduction

Methods for finding solutions to nonlinear equations include the perturbation methods [1], the
asymptotic methods [2], the homotopy analysis method [3], the homotopy perturbation method
[4], the variational iteration method [5], the Gamma function method [6], the weighted average
function methods [7] - [9].

The results of approximate analytical methods often have solutions of the first order or higher
approximation. The results of solutions in the first order approximation are often chosen in the form
of Acos(wt), where A is the amplitude and o is the oscillation frequency. Finding the oscillation
frequency o using analytical methods [1] - [3] is sometimes complicated to perform and the results
may have large errors, leading to the results of the first order approximation that may not ensure the
necessary accuracy. In the approximate analytical methods [1] - [5] and [6] the results in the first
order iteration often have large errors compared to the exact solution. So, the need to find methods
that results in the first iteration are reliable is meaningful and worth considering.

This paper proposes the methods of determining the solutions of a nonlinear system through
the results of numerical calculations and the method of using the weighted average function
(WAM) [7] - [9] to obtain the results of the approximate analytical solution. The obtained results
are promising and reliable because the errors are very small, and the calculation process is
relatively simple, easy to apply to solving some nonlinear equations when applying the
calculation in the first order iteration.

The contents of this paper include: 1. Introduction; 2. Methods; 3. Results and discussions; 4.
Conclusion.

2. Methods

It is supposed that the following nonlinear equation is considered to solve:
(1 + gu?)ii(t) + gu(t) + e5(u(t))® =0 (1)
with initial conditions
u(0)=A,u(0)=0 2
where &, €5, €5 are positive or non-negative real numbers. In the special case when &; = 0,
equation (1) becomes briefly:

i+ eu+equd = (3)
With the special cases when ; = 1, &, = €3 = ¢, equation (1) becomes:
u+eu=0 4

This paper will solve the cases of equations by the formulas (1) and (3). Solving nonlinear
differential equations (1), (3) by other analytical methods [1] - [3] is relatively complicated and
difficult to apply. In this paper, the following methods are implemented: First, the direct
integration method is applied to find the exact natural frequency w,, and then solved by the
numerical method to get numerical results. From there, we establish a criterion for evaluating the
errors between the solutions by the numerical method and the proposed solutions by the
expression as Acos(ot). Afterward, based on the method of using the weighted average function
we will determine the frequency values and the approximate analytical solutions of the above
nonlinear equations. The results are then compared to evaluate the errors to clarify the reliability
of the proposed methods. The specific contents are implemented in the sections below.

2.1. Determine the exact frequency w,, by the direct integration method
Equation (1) is rewritten in the form

L uteu’ )
1+gu?
ina: =, _dvdu  dv
Setting: vEu=—_ 0= = = v (6)
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Substitute equation (6) into equation (5) yields

dv  gu+ equd U + g3ud
—+—-=0 dv = —————d 7
du 14 &gu? T vav 1+ gu? u ()
Integrating both sides of equation (7) gives
2
v
where H is the integration constant and F(u) is determined by the following expression:
gu + gul 1 5 £ 5
F(U)ZITEluzduzz—gl[&_gu +(£2—8—1)ln(1+81u )] (9)
Substitute the formula (9) into the expression (8) to get
v? 1 &3
- = H-— % gqu? + (82 — g) In(1+ eluz)] (10)

The constant of H can be gotten by the initial condition (2). When t = 0,u(0) = A4,v =
1(0) = 0 so from the formula (10) we get the value

1 2 €3 2
H=— [e3A + (sz - —) In(1+ A )] (11)
2& &
Substitute the expression (11) into the expression (10) to get

duy> 1 £ 1+ & A?
2= (ZZ) = = A2 — 12 ( __3 1 12
v (dt) & ( W)+ ln(1+e uz) (12)
The formula (12) can get as

++/e.d

dt = Ve du
1+ g, A2 (13)

eg(42 —u?) + (£ = 2) In( {750

We could see that the closed trajectory is symmetric with respect to the u axis [1]. So, the time
needed for the representative point to move from u = —A to u = A is one-half the period T, then
(13) will be integrated and becomes

A
T=2\/£_1f
—-A

du

g3(A%2 —u?) + (82 83) In (M) 1)

&1 1+ Sluz

Additionally, in (14), the integral over the range [—A4, 0] is the same as that over the interval
[0, A], then gets
du 21

A
T=Tex=4'\/gf yWex = 77
0

Tex 15
2 _ .2 & 1+ 51142) (15)
e5(A%? —u?) + (sz 51)l (1 Yy

where T,, is the period and w,, is the oscillation frequency. The expression (15) is the exact
one of the period and oscillation frequency of the original equation (1).
The exact solution of the original nonlinear equation (3) will be gotten as follows

Wexz) = TZ_”' To@ = \/_I \/ d (16)

ex(3) & A“—u +€2(A2—U )

After some manipulations the expression (16) is written in the form [1], [4]:
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o - o 4 ﬂf 49 . S
&) T(3)’ =@ \/€2+83A2 o\/].—kSinzé” 2(52+53A2)

2.2. The approximate solution based on results of the numerical method

By analyzing with the odd-order nonlinear systems as same as in [10], the oscillation system
should be described under the forms of cos[(2k + 1)wt)]. Because of that, the original nonlinear
equations (1) and (3) could be proposed by the solution as

Upro1(t) = A cos(wpro1t) (18)
where w41 is the unknown frequency that needs to be found.

We will solve the original nonlinear equation (1) or (3) by the numerical method, for example
using programs as Matlab, Mathematica or Maple. The softwares often use the 4th-5th order
Runge-Kutta algorithm. The result of solving the equation (1) or (3) by the numerical method is
denoted as

u(t) = Unum(t) (19)

To determine the unknown frequency w,,.,1, the error between the solutions (18) and (19) has

been established by the form

err = Acos(Wpre1t) — Unym (L) (20)
Let the error (20) reaches its minimum according to the following least squares criterion
N
. 1 2 tl - tz
Min( (err)z) = N+1 ZO(A cos( wprolti) - unum(ti)) b = N (21)
L=
In the formula (21), the time range is considered to be t = [t; + t,]; then, t; = % are the

time-divided pieces, and N is the total number of pieces. The larger N and the smaller ¢; are, the
more accurate the results are. From the criterion (21), the unknown frequency w,,,, has been
determined by the numerical method.

2.3. The approximate solution by the weighted average method (WAM)

Similar to the expression (18) and then applying the weighted average method (WAM) [7], we
will solve the system (1) when the approximate solution of (1) is written in the form
Uproz(t) = (A — B) cos(wprozt) + Bcos(Bwprpat) (22)
where B is the amplitude and w,,, is the frequency. The amplitude B is often a given value
and the frequency wpro2 is an unknown value which need to find. Note that the solution
expression (22) always satisfies the initial conditions (2).
The average value function W of a function x(t) with a time period ==ot is determined by the
following formula [7] as
W(x(1)) = foooszwzte‘s“’tx(mt) dt = foooszre‘sT x(1) dt (23)
In formula (23) the parameter s is a positive number. According to the Galerkin method [9],
we will set the following average criterion as
([(1 + 51u2)ﬁpr02 ®) + E2Upro2 ®) + E3ugr02(t)]-upr02 ®)=0 (24)
where the symbol (. ) is the average value, taken according to the expression (23).
By substituting (21) into (24) and then applying the average value formula (23), the formula
of the frequency ® will be determined. In the case when A = 10, B = 0.04746512525, ¢;= 0.1, €,
=1, e3= 0.1, the formula of the frequency w = w2 can be obtained as follows:

TS
(1)2 = a)Izm,z = ﬁ (25)
where
TS = (1045.252573wcos(2) + 4740.811914 + 259.8311004wcos(4) + (26)
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4.747319708wcos(6) + 0.03358045352wcos(8) +
0.0001064284168wcos(10) + 1.268932538 10~ wcos(12))

and
MS = (—563.6879051wcos(2) — 2547.921689 — 146.1469827wcos(4) —
7.196377659wcos(6) — 0.08405756234wcos(8) — (27)
0.0003724994589wcos(10) — 5.710196421 10~ wcos(12))
where wcos(i), (i = 2,4, ...,12) is the weighted average value calculated by the formula (23)
with x(7) = cos(iwt). According to the frequency formula (25), w = wy,,, depends on the
parameter value s, that is w,,.,, = w(s). To determine the optimal parameter s, let the square of
the residual errors reach the smallest value, these residuals are the values when substituting the
solution expression (22) into the original nonlinear equation (1) or (3)

N

1 Z " 2 .
Err? = N+1 [(1 + gluz)uproz (t) + E2Upro2 () + SSuSroz (ti)] - min (28)
i=0

where t;, N are described in the formula (21).
3. Results and discussions

3.1. Calculate oscillation frequencies

Tables 1 to 6 show the results of exact frequency calculations based on section 2.1 and
numerical calculations based on section 2.2. The results in tables 1 to 6 are different cases
corresponding to the changes of parameters &, €5, €5 and A.

Table 1. Values of frequency in equation (1) when g; = 0.1,¢, = 1,65 =1

A 1 5 10 30 100 200
Dex 1.2704 2.56827078  2.95396608  3.13372712  3.15951876  3.16157720
Opro1 1.2715 2.567863202 2.953800876 3.133718728 3.159519457 3.161577398

Error(%) 0.0793 0.01587 0.00559 0.00027 0.00002 0.00001
Table 2. Values of frequency in equation (1) when &; = 0.5,&, = 2,65 =5
A 1 5 10 30 100 200
Wex 2.02417697  3.009705 3.11822951  3.15691053  3.16177875  3.16215205
®prot 2.0236447 3.009577 3.11820647  3.15691159  3.161778879 3.162152064

Error(%) 0.0262979 0.0042365 0.0007390 0.0000334 0.0000040 0.0000002

Table 3. Values of frequency in equation (1) when &; = 5,&, = 3,&5 = 0.5

A 1 5 10 30 100 200
Oex 0.86933 0.3738363 0.33282756  0.31821973  0.31641021  0.316273507
®prot 0.87024 0.3755275 0.332832654 0.318173041 0.316405220 0.3162723046
Error(%) 0.1048 0.4503 0.0015 0.0147 0.0016 0.0004
Table 4. Values of frequency in equation (3) when e, = 1,65 =1
A 1 5 10 50 100 200
Oex(3) 1.31777606  4.35746185  8.53358619 42.3729955  84.7274799  169.445702
Opro1(3) 1.31829683  4.35743356  8.53328455 42.3730847  84.7280341  169.4477032
Error(%) 0.03950 0.00065 0.00353 0.00021 0.00065 0.00118
Table 5. Values of frequency in equation (3) when &, = 2,653 =5
A 1 5 10 50 100 200
Oex(3) 2.37629671  9.58178803  18.9993678  94.7323420  189.448125  378.887970
Opro1(3) 2.37604332  9.58157554  18.9992552  94.7330285  189.450632  378.8980666
Error(%) 0.0107 0.0022 0.0006 0.0007 0.0013 0.0027
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Table 6. Values of frequency in equation (3) when &, = 3,53 = 0.5

A 1 5 10 50 100 200
Oex(3) 1.836644 3.474749 6.24617417  30.0058209  59.9331894  119.827114
Opro1(3) 1.8366900 3.474197 6.246806561 30.00579543 59.93339635 119.8281100
Error(%) 0.0025 0.0159 0.0101 0.0001 0.0003 0.0008

From the results in the Table 1 to Table 6, it can be seen that:

- The exact frequency values are all expressed by numerical results according to formulas
(15), (16), (17). The frequency values according to the proposed method w,,,; have very small
errors compared to the exact frequency values.

- The approximate solution in the form of the formula Acos(wp.o1t) Only needs to be
performed in one iteration, so it is easy to apply to nonlinear systems.

- The amplitude values A in Table 1, 2 and 3 are the solutions in equation (1) when values of
A are very large. The frequency values do not change much in comparing between them with
each other.

3.2. Calculated by the numerical method and the WAM

Based on the sections 2.2 and 2.3 above, we will get the solutions u(t) and frequencies according
to the formulas (18), (22) and (25). The calculation results for some cases are shown in Tables 7
and 8. The results in Table 7 show that the frequency errors between values calculated by the two
proposed methods and by the frequency exact are only under 0.0892%. The displacement u(t) errors
shown in Table 8 between values calculated by the two proposed methods and by the numerical
method are also under 0.00229. It is seen that the results by the proposed methods are very reliable.

Table 7. Values of frequency in equation (1) obtained in the sections 2.2 and 2.3

A Wexact Wpro1 Error (%) Wpro2 Error (%)
A=10 1.363577568 1.363524025 0.00392 1.36236097  0.0892
A=20 1.399161152 1.399111748 0.0035 1.398274159 0.063
A=30 1.407147271 1.407120147 0.0019 1.406732425 0.0294
A=40 1.410130644 1.410113921 0.0012 1.410166035 0.0025

Table 8. Values of u(t) in equation (1) obtained in the sections 2.2 and 2.3

Cases of Error u,,,.(t) Error w,, ., (t)
i t pro t pro
changing Upro1 (£) With 1y, (£) Uproz (1) With Uy (0
A=10,6; = 0.1 9.95c0s(1.3623t)
€, = 1,6 =02 10cos(1.363524025t) 0.00229 + 0.05c05(4.0871) 0.00059
A=20,6; = 0.1 19.96c0s(1.398t)
€, = 1,6 =02 20c0s(1.399111748t) 0.001348 + 0.04c0s(4.1941) 0.00115
A=30,¢, = 0.1 29.97cos(1.4067t)
€, = 1,6, =02 30cos(1.407120147t) 0.00080 + 0.03c0s(4.2201) 0.000577
A=40,¢, = 0.1 39.98c0s(1.410t)
6, =1,6 =02 40c0s(1.410113921t)  0.0005 + 0.02¢05(4.2301) 0.00005
] -, \\ P g
\\ /l
. S
(1) 1 \ /
‘\‘ ’/
\_‘ //
b \\ /5
\'\ -

Figure 1. Solution of u(t) when A = 20,¢; = 0.1,6, = 1,65 = 0.2

et
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Figure 1 and Fgiure 2 show the solutions of displacement u(t) calculated by formulas (18) and
(22) — calculated by the two proposed methods and compared with the displacement calculated
by the numerical method. These figures show that they are very closed.

40 -—

~ o

p—

-1 "

= o = Proposed 1 8 Frogosed 3]

Figure 2. Solution of u(t) when A = 40,¢; = 0.1,6, = 1,65 = 0.2
4. Conclusion

This paper has solved the single-degree-of-freedom nonlinear system to obtain the natural
frequencies and solutions of displacement u(t). The paper has contributed to the analysis of the
system in the form of equation (1), which is a new system that has not been considered in
previous documents. However, the special cases in the form of equation (3), the calculation
results here are similar to the previous results. The calculation results have determined the exact
frequency by the direct integration method. Based on the numerical method, the paper has
determined the frequency when using the error criterion to reach the minimum. The method using
the weighted average function obtains both the frequency and the approximate analytical solution
containing the expressions of cos(wt) and cos(3wt). The obtained results in the paper on the
oscillation frequency have very reliable values because the error with the exact solution is very
small. The methods of determining the solutions here can be applied in practice when the
nonlinear systems are complex.
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