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In recent years, the construction of algebraic structures on graphs has
attracted significant interest from many researchers, especially
finding the irreducible decomposition of the powers of an edge ideal.
In this paper, we consider A = Q[X, ..., X¢] as a polynomial ring in k
variables over the field Q, G = (V, E) as a graph with the vertex set
{X1,....xJ} and Jg as the edge ideal associated with G. Our main result
is constructing a simple, connected non bipartite graph G over a
polynomial ring of 9 variables and calculating the isolated and the
embedded irreducible components of powers of the edge ideal JZ,
with some small number n. In the next research, we can apply this
technique to study more the structure of an edge ideal, for examples
calculating the indexes astab(Jg) or distab(Jg). It helps us gain a
better understanding of the structure of components within graphs,
thereby facilitating the development of more efficient algorithms for
processing and analyzing graphs.
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Dai s6 giao hoan
Idéan don thac

Idéan canh

Phan tich bat kha quy
Db thi

Trong nhimg nim gan day, viéc xay dung cau tric dai sb trén do thi
dugc nhiéu nha khoa hoc quan tdm nghién ctru, dac biét 1a viéc tim
phan tich bat kha quy cua lity thira ciia idéan canh. Trong bai béo nay,
chung t6i xét A = Q[Xy, ..., %] 1a vanh da thtrc k bién trén truong Q, G =
(V, E) 1a db thi vé6i tap dinh {xy, . . ., xJ va Jg 12 idéan canh lién két voi
G. Két qua chinh cua bai bao 1a xay dung mot I6p dd thi don, lién thong
non-bipartite trén vanh da thirc 9 bién va tinh toan cac thanh phan bt
kha quy co lap va thanh phan bat kha quy nhing cta mot s lity thira
cua idéan canh /g, v6i n nho. Trong dinh huéng nghién ciu tiép theo, ta
c6 thé dung k§ thuat nay de nghién ctru sau hon vé cau tric cua idéan
canh, chang han cac chi s6 astab(Jg) hodc distab(Jg). Diéu nay rat quan
trong, n6 gitp ta hiéu 10 hon vé C4u triic ctia cac thanh phan trong dd
thi, tir d6 gitp phat trién cac thudt toan hiéu qua hon cho viéc xir 1y va
phan tich d6 thi.
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1. Introduction

Let G = (V, E) be a finite connected simple graph with the vertex set V' = {uq,...,ux} and the
edge set E, A = Q[x1, ..., xx] the polynomial ring in & variables over a field Q. Recall that the edge ideal
associated to G, denoted by Jg, is the ideal of R generated by the square-free monomial z;z; such that
uw;u; € E. The map G — Jg gives us a corresponding 1 — 1 between the family of graphs and the family
of monomial ideals generated by square-free mononials of degree 2. Studying the set of associated prime
ideals of powers of edge ideals is considered by many mathematicians (see [1]- [4]). For instance, The
authors in [2] proved that the set of associated prime ideals of powers of edge ideals formed a ascending
sequence, i. e. Ass(A/J™) C Ass(A/J™ 1), for all n, or Ha et al. [5] described the set of associated prime
ideals of powers of edge ideals through graph theory called generalized ear decomposition.

We say that a monomial ideal J # A is irreducible if J cannot be written as a nontrivial intersection
of any two monomial ideals of A. A monomial ideal J # A has an irreducible decomposition (ID for short)
if it can be expressed as J = N}_;J;, where 71 and each J; is irreducible. An ID of .J is call irredundant
if any J; cannot be rejected and the set of all ideals in an irredundant ID of J is denoted by Irr(J). In
the set Irr(J), each element is called irreducible component (IC for short), and the IC is called isolated if
its radical does not contain radicals of any other irreducible components (ICs for short), otherwise it is
called embedded.

For edge ideals-a class of special monomial ideals, the finding ID of powers of edge ideals is always
an interesting problem (see [6] - [9]). Recently, Morales et al. [10] have described the set of ICs of powers
of edge ideals Irr(J7%) by using some tools from graph theory such as the ear decomposition theorem and
the structure of graph theorem. More concretely, they described the general form of ICs of Irr(J3%), gave
the formula to compute the number of isolated ICs and the way to compute isolated and embedded ICs.
The purpose of our paper is to construct a special graph with 9 vertexes over a 9 variable-polynomial
ring Qa, . .., ] and then compute isolated and embedded ICs of some small powers of edge ideal J in
order to show how do Theorem 3.1 and Theorem 5.3 in [10] operate.

In the next section, we will recall some results about ID, eardecomposition, replication graphs,...
In the section 3, we will compute isolated and embedded ICs of Irr(J7) for some small number n € N
of a special graph (see Example 3.2 and Example 3.4).

2. Preiminaries

In this section, we recall some terminologies that will be used in the rest of the paper. For a non-zero
vector a = (ai,...,a;) € N, weseta+1=(a;+1,...,ap, +1) e N\, m2:= (27 | i =1,...,k, a; > 0),
2 =" ...xy* and Supp(a) = Supp(x®) := {z; € V(G) | a; # 0}.

It is clear that a non-zero monomial ideal J of A is irreducible if J is of the form m¢ for some non-

X

zero vector ¢ € N* and its ID is an expression of the form I = m®* N...Nm®, for some non-zero vectors
c1,...,¢p € NF,

Definition 2.1 (i) A graph G is called factor-critical if for any vertex v in G the graph G — v has a perfect
matching. A set U C V is called factor-critical if the induced subgraph on U is factor-critical. A set K C V' is
called matching-critical if the induced subgraph on K is a disjoint union of factor-critical graphs.

(ii) A set X C V is a cligue of G if the induced subgraph G[X] is a complete graph and it is a coclique if the
induced subgraph G[X] has no edges.

(iii) An ear decomposition Gy, G1,...,G, = G of a graph G is a sequence of graphs with the first graph G
being a vertex, edge, even cycle, or odd cycle, and each graph G, is obtained from G; by adding an ear.
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(iv) Let a € N¥ be a non zero vector and we set P; = {z; = xgl), . ,xgai)} for each a; > 0. The graph P :=

pa(G) with the vertex set V(P) = Uy, >0 F; and the edge set E(P) = {:c,l(l)x;-m) | z; € P;,x; € Pj,x;x; € B}

is called the replication of G by the vector a. The support of P is the set Supp(P) := V(P) NV = Supp(a),

we denote Ng(P) = N(V(P) N V). For small values of a; < 3 sometimes we will write x;, 2}, z instead of
n @ 3)

[ Rk A

From now on, for each subset X belongs to V, we define N (X) be the set of vertices that are adjacent
to some elements in X.

Remark 2.2 (i) A set X C V is a coclique iff N(X) N X = () and X is a maximal coclique iff V = N(X) U X.

(i) It is easy to see that odd cycles are factor-critical, in particular the set of one element is factor-critical; If X is

factor-critical, then the number of vertices of X is odd and v(X) = %, in particular complete odd graphs are
factor-critical.

3. Isolated and embedded irreducible components of Irr(1*)

The following theorem allows us to find non embedded ICs of Irr(J%).

Theorem 3.1 [10, Theorem 3.1] (i) Let X C V be a maximal coclique, Y :=V \ X and M a monomial. Then
Mx"™* is a corner element of J% + m DY if and only if M is a monomial of degree n.— 1 with support in'Y .

(ii) Every non embedded IC of J% can be written as m®T1x for some set X C V such that Supp(a) C X,
Y :=V'\ X is a maximal coclique inside V and M := x® is a monomial of degree n — 1.

(iii) Let X1,..., X, be the maximal coclique sets inside V and p; = d — $X;. Then the number of non
embedded ICs of J{% is exactly >0 _, (“;1:71171) it coincides with a polynomial of degree bight(Jg) — 1, where

bight(Jg) is the biggest height of ICs of Jg.

Example 3.2 Let G = (V, E) be the graph with the vertex set V = {a,...,i}, A = Q|a, ..., 1] the polynomial
ring of 9 variables a, . .., 7 over the field ) and Jg the edge ideal associated with the graph G. Find all isolated
ICs of Irr(J) with n = 1, 2 (see Figure 1)?

Figure 1. Example 3.2

It is known that the maximal ideal of A ism = (a,b,¢,d, e, f, g, h, )R and edge ideal associated with the graph
Gis
Jo = {ab,be, cd, de, ea, cf, fg, gh, gi, hi} .
By Theorem 3.1, we should do several steps:
(1) Firstly, find all the minimal vertex covers of G, they are the following 15 sets:

X = {a>b7d7f7h’i};X2 = {a7badaf7gah};X3:{a’vb’dvagai}§
Xy ={a,c,e,g,h}; X5 ={a,c,e,q,i}; Xo = {a,c,e, f,h,i};

X, ={a,c,d,g,h}; Xs ={a,c,d,g,i}; Xg ={a,c,d, f,h,i};
Xi10={b,c,e,g,h}; X11 ={b,c,e,g,i}; X12 = {b,c,e, f, h,i};

Xi3 ={b,d,e, f,h,i}; X14 = {b,d,e, f,g,h}; X15 = {b,d,e, f,g,i}.

(2) Secondly, the number of isolated ICs of Irr(J{) can be computed by Theorem 3.1, (iii). Since we have
9 sets X; with 6 elements and 6 sets X; with 5 elements:
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¢ For n = 1, the results as below:

15
pi—1+k—1 6-1+1—1 5-14+1-1 5 4
= = :1.
;( w1 ) 9( 61 +6 51 9(,)+6(, 5

e For n = 2, the results as below:

15
pi—1+k—1 6-1+2-1 5-1+2-1 6 5
= = :4.
;( o1 ) 9( 61 +6 51 95)+6(,) =8

(3) Thirdly, we can find concretely all isolated ICs of Irr(.J¢) by Theorem 3.1, (ii).

e The case n = 1: since all monomials of degree n — 1 = 0, all isolated ICs have the form mlxi for
1=1,...,15. Thus
Jo={m'% |i=1,...,15}.
 The case n = 2 : We consider all monomials M = x® of degree n — 1 = 1 such that Supp(a) C X;.

- For instance, we find all isolated ICs with respect to the set X4, = {a,c, e, g, h}. We can see that 1x, =
(1,0,1,0,1,0,1,1,0), and the monomials of degree 1 whose support belong to X, are a, ¢, ¢, g, h.
+ Because the monomial a has vecto a = (1,0, --- ,0), so the isolated IC is m®*1xs = (a2, ¢, e, g, h)R.

+ Similarly, we also have isolated ICs with respect to the monomial c, e, g, h are:

(a7 027 €9, h)A7 <a7 c, €2a 9, h)Aa (a’a G €, 927 h)A’ (a’7 ¢ée g, h2)A

- Continue to do similarly with the sets X, Xo, X3, X5, ..., X15, we can find 84 isolated ICs of Irr(J(Q;).

It is much more difficult for us to find embedded ICs of J@, even n is a small number, but the
following theorem is an useful tool using replication technique.

Theorem 3.3 [10, Theorem 5.3] Let n2 be an integer, a € N* be a nonzero vector, X C V such that Supp(a) C
X. Let denote Y := V \ X and P := pa(G) the replication of G by a. Assume that Supp(a) N N(X) = (). Then
the following statements are equivalent:

(i) m X s an embedded IC of J}.
(ii) The sets P and X satisfy the following properties:

1. X is a coclique set, v(P) =n —1andV = Ng(D(P))UX UN(X).
2. C(P) =0, ie. P = D(P)U A(P) in the Gallai-Edmonds’s canonical decomposition.

Now we can apply [10, Theorem 5.3] for finding embedded ICs of Irr(J%) in Example 3.2.

Example 3.4 Find embedded ICs of Irr(J7%) in Example 3.2 for the cases n = 2, 3, 4.

By Theorem 3.3, we first need to find factor-critical set P such that v(P) = n—1, a vecto a and the set X such
that Supp(a) N N(X) = 0, Supp(a) C Y = V \ X and satisfies the property Theorem 3.3,(ii), i.e. X is coclique
set, V. = Ng(D(P))UZUN(X), P = D(P)U A(P) within the Gallai-Edmonds canonical decomposition.

(i) The case n = 2.

+ In this graph, there is only one factor-critical set P = {g, h, i} satisfyingv(P) =n—-1=2-1=1.
+ Choose vecto a = (0,0,0,0,0,0,1,1,1) € N,

+ We find all the sets X such that N(X) N Supp(a) = (. Then we have

X1 ={a,c}, X ={a,d}, X3 = {b,d}, X4 = {b,e}, X5 = {c, e}.

+ We can see that P = {g, h,i} and X; = {a, ¢} satisfy the condition (ii) of Theorem 3.3, i.e.
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(1) X3 is coclique set, v(P) = 2 — 1 = 1 and since N(X;) = {b,e,d, f}, N(D(P)) = {f, g, h,i} we have
V = N(D(P)) UX; UN(X,).
(2) Since D(P) = P, we have A(P) = C(P) =, so P = D(P) U A(P) in the Gallai-Edmonds’s canonical
decomposition.
Let consider Y1, = V \ X; = {b,d,e, f,g,h,i}. Since a + 1y, = (0,1,0,1,1,1,2,2,2), it implies that
m2tvi = (b, d, e, f, g% h?,i?) is embedded IC of JZ.
Do similarly to the sets Xo, ..., X5, we can find embedded ICs Jé:
W = (be,e, f0% 2 i2); S = (a,
ma+1Y4 = (a’ C7 d7 f7 92’ h2’ i2); ma+1Y5 =
(ii) The case k = 3.
e Choose the factor-critical set P = {a, b, ¢, d, e} satisfying the condition v(P) =n—-1=3—-1=2.
+ Choose vecto a = (1,1,1,1,1,0,0,0,0) € N°.
+ We have 3 sets X such that N (X) N Supp(a) = 0. They are the sets

X1 = {g},Xg = {h},X3 = {Z}

+ It is clear that the sets P = {a, b, ¢,d, e} and X; = {g} satisfy the condition (ii) of Theorem 3.3:

(1) X is coclique set, v(P) = 3—1 =2 and since N(X;) = {f, h,i}, N(D(P)) = {a,b,c,d, e, f} we have
V =N(D(P))UX; UN(Xy).

(2) Since D(P) = P, A(P) = C(P) = 0. Thus P = D(P) U A(P).

Now we take the set Y, = V' \ X7 = {a,b,¢,d,e, f, h,i}. Itis clear thata + 1y, = (2,2,2,2,2,1,0,1,1) so
ma v = (a2 b2, %, d?, €2, f, h,i) is the embedded irreducible component of J&..

Do similarly with the sets X2, X3 we also have
n,1a+1y2 — (CL2,b27C2,d2,62,f,g,i);ma+ly3 — (0,2,b27027d2,€2,f7g,h)

belong to Irr(J2,).

e Replicate the vertex g of the triangle {g, h, ¢}, we have that gf, f¢’, g'h is an ear of {g, h,i}. Choose the
pentagon P = {g, f, ¢, h,i} that is the factor-critical satisfying the condition v(S) =n —1 =3 —1 = 2. (see
Figure 2).

Figure 2. Example 3.4 when replicating the vertex ¢

+ Choose vecto a = (0,0,0,0,0,1,2,1,1) € N,
+ Then we can see there are 3 sets X such that N(X) N Supp(a) =0 :

X1 = {a,d}7X2 = {b, d},Xg = {b,e}.

+ Check the condition (ii) of Theorem 3.3, we have
(1) It is clear that X is the coclique set and

N(D(P))UX1UN(X1) ={g, f.¢',h,i,ctU{a,c} U{b,c,e} =V.

(2) Since D(P) = P, we have A(P) = C(P) =0, s0 P = D(P) U A(P).
Now take the set Y1, = V' \ X7 = {b,c,e, f, h,i}. It can be implied from a + 1y, = (0,1,1,0,1,2,3,2,2)
that m*t1vi = (b, ¢, e, f2, g, h?,4?) is the embedded IC of J&.
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Do similarly with the sets X5, X3 we can find
ma+1Y2 = (au c, €, f27 937 h27 22)7 ma+1Y3 = (a7 C, da f2u 937 h27 ZQ)

belong to Irr(J3,).

e We can also replicate 2 vertexes h, i of the triangle {g, h,4}. Then hi’,i'h’, h'i is an ear of {g, h,i}. Now
we choose the pentagon P = {g, h,i’, 1,4} that is the factor-critical satisfying v(P) =n —1 =3 — 1 = 2. (see
Figure 3)

Figure 3. Example 3.4 when replicating h, i

+ Choose vecto a = (0,0,0,0,0,0,1,2,2) € N°,
+ With the similar method we can find the 5 sets X

X1 ={a,c}, Xo ={a,d}, X5 = {b,d}, X4 = {b,e}, X5 = {c,e}

such that N'(X) NSupp(a) = 0 and satisfying the condition (ii) of Theorem 3.3. So we can find 5 ICs of Irr(.J2):

Yi = {b,d.e, f,g,h,i} = w1 = (b,d,e, f, g% h*,i%);
Yy = {b,c,e, f,g,h,i} = m*T 12 = (b,c,e, f, g% h3,i%);
Ys = {a,c,e, f,g,h,i} = m* s = (a,c,e, f, g2, h3,%);
Yy = {a,c,d, f,g,h,i} = m*™v = (a,c,d, f, g%, h3,i%);
Ys = {a,b,d, f,g,h,i} = m>™¥s = (a,b,d, f, g% h3,i%)

(iii) The case n = 4.

For this case, similar to the case n = 3, we need to find the factor-critical set P such that v(P) = 3 and
satisfies the conditions of Theorem 3.3. In order to do that, we need the following replicating technique.

e Replicate the vertexes of the pentagon {a, b, ¢, d, e}, for instance a’, ¢’ (or a’, ¢’ or ¥/, or ¢/, d' or d’, ¢’), we
have some factor-critical sets P satisfying v(P) = 3.

o Replicate two edges of the triangle {g, h, i}, for instance h’, i’ and ¢’, 7", we have the sequence of ears
Go = {ga h, 7’}3 G = {ga h/a i, g/}a Gy = {ha g/a i//a h/}

We also get that P = {g, h,i,h’,i’,g’,i"} is factor-critical set with v(P) = 3.

After that by similar technique we find vecto a, the coclique sets X, the sets Y = V' \ X and finally we can
find the embedded ICs with respect to these sets.

4. Conclusion

The paper has constructed and presented some examples of ID of powers of edge ideals on polynomial
rings through computing the isolated and embedded ICs of J%. Through Example 3.2 and Example 3.4,
we can see that the results in [10] are very useful to compute isolated and embedded ICs of the powers
of many classes of edge ideals. This is a very important result for our future research. Specifically, we
will use these techniques to compute astab(J¢) or distab(Jg).
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