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Received:  30/12/2024 In recent years, the construction of algebraic structures on graphs has 

attracted significant interest from many researchers, especially 

finding the irreducible decomposition of the powers of an edge ideal. 

In this paper, we consider A = Q[x1, ..., xk] as a polynomial ring in k 

variables over the field Q, G = (V, E) as a graph with the vertex set 

{x1,...,xk} and JG as the edge ideal associated with G. Our main result 

is constructing a simple, connected non bipartite graph G over a 

polynomial ring of 9 variables and calculating the isolated and the 

embedded irreducible components of powers of the edge ideal   
 , 

with some small number n. In the next research, we can apply this 

technique to study more the structure of an edge ideal, for examples 

calculating the indexes astab(JG) or distab(JG). It helps us gain a 

better understanding of the structure of components within graphs, 

thereby facilitating the development of more efficient algorithms for 

processing and analyzing graphs. 
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  30/12/2024 Trong những năm gần đây, việc xây dựng cấu trúc đại số trên đồ thị 

được nhiều nhà khoa học quan tâm nghiên cứu, đặc biệt là việc tìm 

phân tích bất khả quy của lũy thừa của iđêan cạnh. Trong bài báo này, 

chúng tôi xét A = Q[x1, ..., xk] là vành đa thức k biến trên trường Q, G = 

(V, E) là đồ thị với tập đỉnh {x1, . . . , xk} và JG là iđêan cạnh liên kết với 

G. Kết quả chính của bài báo là xây dựng một lớp đồ thị đơn, liên thông 

non-bipartite trên vành đa thức 9 biến và tính toán các thành phần bất 

khả quy cô lập và thành phần bất khả quy nhúng của một số lũy thừa 

của iđêan cạnh   
 , với n nhỏ. Trong định hướng nghiên cứu tiếp theo, ta 

có thể dùng kỹ thuật này để nghiên cứu sâu hơn về cấu trúc của iđêan 

cạnh, chẳng hạn các chỉ số astab(JG) hoặc distab(JG). Điều này rất quan 

trọng, nó giúp ta hiểu rõ hơn về cấu trúc của các thành phần trong đồ 

thị, từ đó giúp phát triển các thuật toán hiệu quả hơn cho việc xử lý và 

phân tích đồ thị. 
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1. Introduction

Let G = (V,E) be a finite connected simple graph with the vertex set V = {u1, . . . , uk} and the
edge set E, A = Q[x1, ..., xk] the polynomial ring in k variables over a field Q. Recall that the edge ideal

associated to G, denoted by JG, is the ideal of R generated by the square-free monomial xixj such that
uiuj ∈ E. The map G 7→ JG gives us a corresponding 1− 1 between the family of graphs and the family
of monomial ideals generated by square-free mononials of degree 2. Studying the set of associated prime
ideals of powers of edge ideals is considered by many mathematicians (see [1]- [4]). For instance, The
authors in [2] proved that the set of associated prime ideals of powers of edge ideals formed a ascending
sequence, i. e. Ass(A/Jn) ⊂ Ass(A/Jn+1), for all n, or Ha et al. [5] described the set of associated prime
ideals of powers of edge ideals through graph theory called generalized ear decomposition.

We say that a monomial ideal J ̸= A is irreducible if J cannot be written as a nontrivial intersection
of any two monomial ideals of A. A monomial ideal J ̸= A has an irreducible decomposition (ID for short)
if it can be expressed as J = ∩r

j=1Ji, where r1 and each Ji is irreducible. An ID of J is call irredundant

if any Ji cannot be rejected and the set of all ideals in an irredundant ID of J is denoted by Irr(J). In
the set Irr(J), each element is called irreducible component (IC for short), and the IC is called isolated if
its radical does not contain radicals of any other irreducible components (ICs for short), otherwise it is
called embedded.

For edge ideals-a class of special monomial ideals, the finding ID of powers of edge ideals is always
an interesting problem (see [6] - [9]). Recently, Morales et al. [10] have described the set of ICs of powers
of edge ideals Irr(Jn

G) by using some tools from graph theory such as the ear decomposition theorem and
the structure of graph theorem. More concretely, they described the general form of ICs of Irr(Jn

G), gave
the formula to compute the number of isolated ICs and the way to compute isolated and embedded ICs.
The purpose of our paper is to construct a special graph with 9 vertexes over a 9 variable-polynomial
ring Q[a, . . . , i] and then compute isolated and embedded ICs of some small powers of edge ideal JG in
order to show how do Theorem 3.1 and Theorem 5.3 in [10] operate.

      In the next section, we will recall some results about ID, ear decomposition, replication graphs,... 
In the section 3, we will compute isolated and embedded ICs of  Irr(JG

n) for some small number n ∈ N 
of a special graph (see Example 3.2 and Example 3.4).

2. Preliminaries

In this section, we recall some terminologies that will be used in the rest of the paper. For a non-zero
vector a = (a1, . . . , ak) ∈ Nk, we set a+ 1 = (a1 + 1, . . . , ak + 1) ∈ Nk, ma := (xai

i | i = 1, . . . , k, ai > 0),
xa = xa1

1 . . . xak

k and Supp(a) = Supp(xa) := {xi ∈ V (G) | ai ̸= 0}.

It is clear that a non-zero monomial ideal J of A is irreducible if J is of the form mc for some non-
zero vector c ∈ Nk and its ID is an expression of the form I = mc1 ∩ . . .∩mcr , for some non-zero vectors
c1, . . . , cr ∈ Nk.

Definition 2.1 (i) A graph G is called factor-critical if for any vertex v in G the graph G − v has a perfect
matching. A set U ⊂ V is called factor-critical if the induced subgraph on U is factor-critical. A set K ⊂ V is
called matching-critical if the induced subgraph on K is a disjoint union of factor-critical graphs.

(ii) A set X ⊂ V is a clique of G if the induced subgraph G[X] is a complete graph and it is a coclique if the
induced subgraph G[X] has no edges.

(iii) An ear decomposition G0, G1, . . . , Gr = G of a graph G is a sequence of graphs with the first graph G0

being a vertex, edge, even cycle, or odd cycle, and each graph Gi+1 is obtained from Gi by adding an ear.
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 Figure 1. Example 3.2 

 It is known that the maximal ideal of A is m = (a, b, c, d, e, f, g, h, i)R and edge ideal associated with the graph 
G is 

 JG = {ab, bc, cd, de, ea, cf, f g, gh, gi, hi} . 

By Theorem 3.1, we should do several steps:
(1) Firstly, find all the minimal vertex covers of G, they are the following 15 sets:

 X1 = {a, b, d, f, h, i} ; X2 = {a, b, d, f, g, h} ; X3 = {a, b, d, f, g, i} ;

 X4 = {a, c, e, g, h} ; X5 = {a, c, e, g, i} ; X6 = {a, c, e, f, h, i} ;

 X7 = {a, c, d, g, h} ; X8 = {a, c, d, g, i} ; X9 = {a, c, d, f, h, i} ;

 X10 = {b, c, e, g, h} ; X11 = {b, c, e, g, i} ; X12 = {b, c, e, f, h, i} ;

 X13 = {b, d, e, f, h, i} ; X14 = {b, d, e, f, g, h} ; X15 = {b, d, e, f, g, i} .

 (2) Secondly, the number of isolated ICs of Irr(JG
n) can be computed by Theorem 3.1, (iii). Since we have 

9 sets Xi with 6 elements and 6 sets Xi with 5 elements:

- TNU Journal of Science and Technology 230(06): 191 197

(iv) Let a ∈ Nk be a non zero vector and we set Pi = {xi = xi
(1)

, . . . , xi
(ai)} for each ai > 0. The graph P := 

pa(G) with the vertex set V (P ) = ∪ai>0Pi and the edge set E(P ) = {xi
(l)
xj
(m) | xi ∈ Pi, xj ∈ Pj , xixj ∈ E}

is called the replication of G by the vector a. The support of P is the set Supp(P ) := V (P ) ∩ V = Supp(a), 
we denote NG(P ) = N (V (P ) ∩ V ). For small values of ai ≤ 3 sometimes we will write xi, xi

′ , xi
′′ instead of

 (1) (2) (3)
xi , xi , xi . 

 From now on, for each subset X belongs to V, we define N (X) be the set of vertices that are adjacent 
to some elements in X. 

Remark 2.2 (i) A set X ⊂ V is a coclique iff N (X) ∩ X = ∅ and X is a maximal coclique iff V = N (X) ∪ X .

(ii) It is easy to see that odd cycles are factor-critical, in particular the set of one element is factor-critical; If X is 
factor-critical, then the number of vertices of X is odd and ν(X) = ♯(X

2
)−1 , in particular complete odd graphs are 

factor-critical. 

3. Isolated and embedded irreducible components of Irr(IG
k )

 The following theorem allows us to find non embedded ICs of Irr(JG
n). 

Theorem 3.1 [10, Theorem 3.1] (i) Let X ⊂ V be a maximal coclique, Y := V \ X and M a monomial. Then 
M xn1X is a corner element of JG

n + m(n+1)1V if and only if M is a monomial of degree n − 1 with support in Y .
 (ii) Every non embedded IC of JG

n can be written as ma+1X for some set X ⊂ V such that Supp(a) ⊂ X , 
Y := V \ X is a maximal coclique inside V and M := xa is a monomial of degree n − 1.

 (iii) Let X1, . . . , Xρ be the maximal coclique sets inside V and µi = d − ♯Xi. Then the number of non 
embedded ICs of JG

n is exactly 
∑

i
ρ
=1 

(
µi−

µ
1+

i−
n
1
−1

)
, it coincides with a polynomial of degree bight(JG) − 1, where 

bight(JG) is the biggest height of ICs of JG. 

Example 3.2 Let G = (V, E) be the graph with the vertex set V = {a, . . . , i}, A = Q[a, . . . , i] the polynomial 
ring of 9 variables a, . . . , i over the field Q and JG the edge ideal associated with the graph G. Find all isolated 
ICs of Irr(JG

n) with n = 1, 2 (see Figure 1)?

http://jst.tnu.edu.vn 319 Email: jst@tnu.edu.vn



• For n = 1, the results as below:

15∑
i=1

(
µi − 1 + k − 1

µi − 1

)
= 9

(
6− 1 + 1− 1

6− 1

)
+ 6

(
5− 1 + 1− 1

5− 1

)
= 9

(
5

5

)
+ 6

(
4

4

)
= 15.

• For n = 2, the results as below:

15∑
i=1

(
µi − 1 + k − 1

µi − 1

)
= 9

(
6− 1 + 2− 1

6− 1

)
+ 6

(
5− 1 + 2− 1

5− 1

)
= 9

(
6

5

)
+ 6

(
5

4

)
= 84.

(3) Thirdly, we can find concretely all isolated ICs of Irr(Jn
G) by Theorem 3.1, (ii).

• The case n = 1: since all monomials of degree n − 1 = 0, all isolated ICs have the form m1Xi , for
i = 1, . . . , 15. Thus

JG = {m1Xi | i = 1, . . . , 15}.

• The case n = 2 : We consider all monomials M = xa of degree n− 1 = 1 such that Supp(a) ⊂ Xi.

- For instance, we find all isolated ICs with respect to the set X4 = {a, c, e, g, h}. We can see that 1X4 =
(1, 0, 1, 0, 1, 0, 1, 1, 0), and the monomials of degree 1 whose support belong to X4 are a, c, e, g, h.

+ Because the monomial a has vecto a = (1, 0, · · · , 0), so the isolated IC is ma+1X4 = (a2, c, e, g, h)R.

+ Similarly, we also have isolated ICs with respect to the monomial c, e, g, h are:

(a, c2, e, g, h)A, (a, c, e2, g, h)A, (a, c, e, g2, h)A, (a, c, e, g, h2)A.

- Continue to do similarly with the sets X1, X2, X3, X5, . . . , X15, we can find 84 isolated ICs of Irr(J2
G).

It is much more difficult for us to find embedded ICs of Jn
G, even n is a small number, but the

following theorem is an useful tool using replication technique.

Theorem 3.3 [10, Theorem 5.3] Let n2 be an integer, a ∈ Nk be a nonzero vector, X ⊂ V such that Supp(a) ⊂
X . Let denote Y := V \X and P := pa(G) the replication of G by a. Assume that Supp(a) ∩N(X) = ∅. Then
the following statements are equivalent:

(i) ma+1X is an embedded IC of Jn
G.

(ii) The sets P and X satisfy the following properties:

1. X is a coclique set, ν(P ) = n− 1 and V = NG(D(P )) ∪X ∪N(X).

2. C(P ) = ∅, i.e. P = D(P ) ∪A(P ) in the Gallai-Edmonds’s canonical decomposition.

Now we can apply [10, Theorem 5.3] for finding embedded ICs of Irr(Jn
G) in Example 3.2.

Example 3.4 Find embedded ICs of Irr(Jn
G) in Example 3.2 for the cases n = 2, 3, 4.

By Theorem 3.3, we first need to find factor-critical set P such that ν(P ) = n−1, a vecto a and the set X such
that Supp(a)∩N(X) = ∅,Supp(a) ⊂ Y = V \X and satisfies the property Theorem 3.3,(ii), i.e. X is coclique
set, V = NG(D(P )) ∪ Z ∪N(X), P = D(P ) ∪A(P ) within the Gallai-Edmonds canonical decomposition.

(i) The case n = 2.

+ In this graph, there is only one factor-critical set P = {g, h, i} satisfying ν(P ) = n− 1 = 2− 1 = 1.
+ Choose vecto a = (0, 0, 0, 0, 0, 0, 1, 1, 1) ∈ N9.
+ We find all the sets X such that N(X) ∩ Supp(a) = ∅. Then we have

X1 = {a, c}, X2 = {a, d}, X3 = {b, d}, X4 = {b, e}, X5 = {c, e}.

+ We can see that P = {g, h, i} and X1 = {a, c} satisfy the condition (ii) of Theorem 3.3, i.e.
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(1) X1 is coclique set, ν(P ) = 2 − 1 = 1 and since N(X1) = {b, e, d, f}, N(D(P )) = {f, g, h, i} we have
V = N(D(P )) ∪X1 ∪N(X1).

(2) Since D(P ) = P , we have A(P ) = C(P ) = ∅, so P = D(P ) ∪A(P ) in the Gallai-Edmonds’s canonical
decomposition.

Let consider Y1 = V \ X1 = {b, d, e, f, g, h, i}. Since a + 1Y1 = (0, 1, 0, 1, 1, 1, 2, 2, 2), it implies that
ma+1Y1 = (b, d, e, f, g2, h2, i2) is embedded IC of J2

G.
Do similarly to the sets X2, . . . , X5, we can find embedded ICs J2

G:

ma+1Y2 = (b, c, e, f, g2, h2, i2);ma+1Y3 = (a, c, e, f, g2, h2, i2)
ma+1Y4 = (a, c, d, f, g2, h2, i2);ma+1Y5 = (a, b, d, f, g2, h2, i2).

(ii) The case k = 3.

• Choose the factor-critical set P = {a, b, c, d, e} satisfying the condition ν(P ) = n− 1 = 3− 1 = 2.
+ Choose vecto a = (1, 1, 1, 1, 1, 0, 0, 0, 0) ∈ N9.
+ We have 3 sets X such that N(X) ∩ Supp(a) = ∅. They are the sets

X1 = {g}, X2 = {h}, X3 = {i}.

+ It is clear that the sets P = {a, b, c, d, e} and X1 = {g} satisfy the condition (ii) of Theorem 3.3:
(1) X1 is coclique set, ν(P ) = 3− 1 = 2 and since N(X1) = {f, h, i}, N(D(P )) = {a, b, c, d, e, f} we have

V = N(D(P )) ∪X1 ∪N(X1).

(2) Since D(P ) = P , A(P ) = C(P ) = ∅. Thus P = D(P ) ∪A(P ).

Now we take the set Y1 = V \X1 = {a, b, c, d, e, f, h, i}. It is clear that a+ 1Y1
= (2, 2, 2, 2, 2, 1, 0, 1, 1) so

ma+1Y1 = (a2, b2, c2, d2, e2, f, h, i) is the embedded irreducible component of J3
G.

Do similarly with the sets X2, X3 we also have

ma+1Y2 = (a2, b2, c2, d2, e2, f, g, i);ma+1Y3 = (a2, b2, c2, d2, e2, f, g, h)

belong to Irr(J3
G).

• Replicate the vertex g of the triangle {g, h, i}, we have that gf, fg′, g′h is an ear of {g, h, i}. Choose the
pentagon P = {g, f, g′, h, i} that is the factor-critical satisfying the condition ν(S) = n − 1 = 3 − 1 = 2. (see
Figure 2).

 Figure 2. Example 3.4 when replicating the vertex g 

 + Choose vecto a = (0, 0, 0, 0, 0, 1, 2, 1, 1) ∈ N9. 
 + Then we can see there are 3 sets X such that N (X) ∩ Supp(a) = ∅ :

 X1 = {a, d}, X2 = {b, d}, X3 = {b, e}. 

 + Check the condition (ii) of Theorem 3.3, we have
 (1) It is clear that X1 is the coclique set and 

 N (D(P )) ∪ X1 ∪ N (X1) = {g, f, g′, h, i, c} ∪ {a, c} ∪ {b, c, e} = V.

 (2) Since D(P ) = P , we have A(P ) = C(P ) = ∅, so P = D(P ) ∪ A(P ). 
 Now take the set Y1 = V \ X1 = {b, c, e, f, h, i}. It can be implied from a + 1Y1 = (0, 1, 1, 0, 1, 2, 3, 2, 2)

that ma+1Y1 = (b, c, e, f 2, g3, h2, i2) is the embedded IC of JG
3 .

http://jst.tnu.edu.vn 519 Email: jst@tnu.edu.vn

TNU Journal of Science and Technology 230(06): 191 - 197

TNU Journal of Science and Technology 230(06): 191 - 197



 Do similarly with the sets X2, X3 we can find 

 ma+1Y2 = (a, c, e, f 2, g3, h2, i2); ma+1Y3 = (a, c, d, f 2, g3, h2, i2)

belong to Irr(JG
3 ). 

 • We can also replicate 2 vertexes h, i of the triangle {g, h, i}. Then hi′, i′h′, h′i is an ear of {g, h, i}. Now 
we choose the pentagon P = {g, h, i′, h′, i} that is the factor-critical satisfying ν(P ) = n − 1 = 3 − 1 = 2. (see 
Figure 3)

 Figure 3. Example 3.4 when replicating h, i 

 + Choose vecto a = (0, 0, 0, 0, 0, 0, 1, 2, 2) ∈ N9. 
 + With the similar method we can find the 5 sets X 

 X1 = {a, c}, X2 = {a, d}, X3 = {b, d}, X4 = {b, e}, X5 = {c, e}

such that N (X) ∩ Supp(a) = ∅ and satisfying the condition (ii) of Theorem 3.3. So we can find 5 ICs of Irr(JG
3 ):

Y1 = {b, d, e, f, g, h, i} ⇒ ma+1Y1 = (b, d, e, f, g2, h3, i3);

Y2 = {b, c, e, f, g, h, i} ⇒ ma+1Y2 = (b, c, e, f, g2, h3, i3);

Y3 = {a, c, e, f, g, h, i} ⇒ ma+1Y3 = (a, c, e, f, g2, h3, i3);

Y4 = {a, c, d, f, g, h, i} ⇒ ma+1Y4 = (a, c, d, f, g2, h3, i3);

Y5 = {a, b, d, f, g, h, i} ⇒ ma+1Y5 = (a, b, d, f, g2, h3, i3)

(iii) The case n = 4.
For this case, similar to the case n = 3, we need to find the factor-critical set P such that ν(P ) = 3 and

satisfies the conditions of Theorem 3.3. In order to do that, we need the following replicating technique.
• Replicate the vertexes of the pentagon {a, b, c, d, e}, for instance a′, e′ (or a′, c′ or b′, c′ or c′, d′ or d′, e′), we

have some factor-critical sets P satisfying ν(P ) = 3.
• Replicate two edges of the triangle {g, h, i}, for instance h′, i′ and g′, i′′, we have the sequence of ears

G0 = {g, h, i}, G1 = {g, h′, i, g′}, G2 = {h, g′, i′′, h′}.

We also get that P = {g, h, i, h′, i′, g′, i′′} is factor-critical set with ν(P ) = 3.

After that by similar technique we find vecto a, the coclique sets X , the sets Y = V \ X and finally we can
find the embedded ICs with respect to these sets.

4. Conclusion

The paper has constructed and presented some examples of ID of powers of edge ideals on polynomial
rings through computing the isolated and embedded ICs of Jn

G. Through Example 3.2 and Example 3.4,
we can see that the results in [10] are very useful to compute isolated and embedded ICs of the powers
of many classes of edge ideals. This is a very important result for our future research. Specifically, we
will use these techniques to compute astab(JG) or distab(JG).
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