TNU Journal of Science and Technology

230(07): 45 - 52

COMPARISON OF YOLOVS8 AND PYTORCH-RETINANET

FOR VEHICLE DETECTION
Bui Xuan Tung!*, Trinh Quang Minh!, Ngo Thi Lan!, Dang Thi Dung?, Huynh Duy Dang?
'Tay Do University, °Can Tho University of Engineering - Technology

ABSTRACT

ARTICLE INFO
Received: 23/01/2025
Revised: 11/03/2025
Published: 21/03/2025
KEYWORDS
YOLOv8

PyTorch-RetinaNet
Vehicle detection
Machine learning

Deep learning

This study aims to evaluate and compare the effectiveness of two deep
learning models - PyTorch-RetinaNet and YOLOVS - for vehicle detection,
addressing the challenges in object detection across varying size, shape,
and lighting conditions. The research methodology utilized a
comprehensive dataset of 4,058 vehicle images with 12 distinct object
classes, implementing both models with varying learning rates (0.001,
0.01, and 0.0001). The dataset was split into training (65%), validation
(24%), and testing (11%) sets, with preprocessing techniques including
image resizing, brightness normalization, and data augmentation applied to
enhance model performance. The experimental results revealed distinct
capabilities for each model: PyTorch-RetinaNet achieved a mAP50 of
38.6% and mAP50-95 of 24.7%, exhibiting particular strength in detecting
large objects (MAP50-95 of 42.0%) and maintaining stable recall metrics
(AR@1: 30.9%, AR@10: 54.7%, AR@100: 55.9%). In contrast, YOLOVS8
demonstrated superior overall performance with a mAPS50 of 45.6%,
mAP50-95 of 33.0%, precision of 48.3%, and recall of 61.5%, particularly
excelling in handling overlapping objects with confidence scores of 0.79-
0.89. The findings suggest YOLOVS is more suitable for real-time
applications, while PyTorch-RetinaNet excels in scenarios requiring
precise detection across varying object sizes.
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Nghién ctru ndy nhdm muc dich danh gia va so sanh hiéu qua cua hai mé
hinh hoc sau - PyTorch-RetinaNet va YOLOvVS dé phat hién phuong ti¢n,
giai quyét cac thach thirc trong viéc phat hién ddi twong trén nhiéu kich
thudc, hinh dang va diéu kién anh sang khac nhau. Phuong phdp nghién ctru
su dung mét tap dir licu gbm 4.058 hinh anh xe véi 12 16p dbi tuong riéng
biét, trién khai ca hai mé hinh véi téc d6 hoc khac nhau (0,001, 0,01 va
0,0001). Tap dit liéu dugc chia thanh cac tap huin luyén (65%), xac thuc
(24%) va thu nghiém (11%), v6i cac ky thuat xu ly trude bao gébm thay dbi
kich thu6ce hinh anh, chudn hoa d6 sang va tang cudng dir liéu dwoc ap dung
dé nang cao hiéu suét clia md hinh. Két qua thir nghiém cho thdy mé hinh
PyTorch-RetinaNet dat dwoc mAPS0 1a 38,6% va mAP50-95 1a 24,7%, déc
biét trong viéc phat hién cac vat thé 16n (mAP50-95 1a 42,0%) va duy tri s6
ligu thu héi én dinh (AR@1: 30,9%, AR@10: 54,7%, AR@100: 55,9%).
Nguoc lai, YOLOvS cho thiy hiéu sudt tong thé vuot troi voi mAP50 la
45,6%, mAP50-95 1a 33,0%, do chinh xac la 48,3% va kha nang thu hoi 1a
61,5%, dic biét trong viéc xtt 1y cac dbi tuong chdng chéo voi diém tin cay
la 0,79-0,89. Céac phat hién cho thay YOLOVS phu hop hon véi cac ing
dung thoi gian thyc, trong khi PyTorch-RetinaNet ndi bat hon trong cac tinh
hudng doi hoi phat hién chinh xac trén cac kich thudc ddi twong khac nhau.
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1. Introduction

Object detection and classification face significant challenges in handling diverse object sizes,
shapes, and lighting conditions, particularly in vehicle detection applications. These challenges
are compounded by the limited availability of comprehensive datasets representing real-world
scenarios. While convolutional neural networks (CNNs) have shown promising results in object
detection [1], achieving high accuracy and processing speed remains a critical challenge.
PyTorch-RetinaNet with ResNet-50 [2], [3] and YOLOvS with Darknet-53 [4] - perform
specifically in vehicle detection scenarios where objects frequently overlap and vary in size. This
study aims to address this gap by systematically comparing both models using a diverse vehicle
dataset of 4,058 images [5], evaluating their performance across different operating conditions to
provide clear insights for selecting appropriate architectures in vehicle detection applications.

Recent research has explored various solutions to these challenges. Studies comparing
RetinaNet and YOLOV3 for real-time detection tasks have shown that RetinaNet achieves higher
accuracy (mAP: 82.89%) but slower processing (17 FPS), while YOLOV3 offers faster detection
(51 FPS) with competitive accuracy (mAP: 80.69%) [6]. Additional research by Nife et al [7] has
confirmed these trade-offs between speed and accuracy in various application scenarios. Reis [8]
et al presents two YOLOv8 models for real-time flying object detection: a generalized model
trained on 40 object classes (mAP50: 79.2%, mAP50-95: 68.5%, 50 FPS at 1080p) and a refined
model using transfer learning for real-world conditions (mAP50: 99.1%, mAP50-95: 83.5%, 50
FPS at 1080p). Recent studies advance object detection: Tan et al [9] evaluates YOLOv3 and
SSD for unmanned driving, Guo et al [10] improves YOLOv8n-seg with FasterNet, CBAM, and
WIoU loss function achieving 98.3% car detection accuracy. At the same time, YOLOVS's
architecture demonstrates effectiveness in detecting flying objects with varying conditions.

2. Proposed method
2.1. Problem Model
2.1.1. Yolo

Figure 1 illustrates the process of using the YOLOvVS8 model to detect vehicles on the road.
The upper part shows a frame from a traffic surveillance camera, reflecting a street scene with
multiple moving vehicles. YOLOVS analyzes the frame to identify the vehicles.

< Image > Using the YOLOvS
*  Model for Vehicle
Detection

< Image >

<Image Containing Bounding Boxes> Detected

Vehicles

Figure 1. YOLO Model
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The model processes the input image and determines vehicle locations. The result is shown in
the lower part, where the original frame is updated with bounding boxes around detected
vehicles. These boxes help users easily identify and track vehicles on the road, demonstrating the
effectiveness of object detection technology in traffic monitoring.

2.1.2. RetinaNet

RetinaNet is a deep neural network architecture that integrates ResNet and Feature
Pyramid Networks (FPN) for object detection (Figure 2). The processing begins when the input
image (such as a snowy landscape with objects like cars and trees) is passed through ResNet - a
powerful CNN that extracts key features from raw pixels into elements like edges, corners, and
shapes [11]. Next, FPN constructs features at multiple levels, allowing the model to process
objects of various sizes, from large (like vehicles) to small (like license plates) [12]. These
features are then fed into two specialized sub- networks: a classification network for identifying
object labels and a regression network for predicting precise locations through bounding box
generation. RetinaNet employs the Focal Loss function to handle the imbalance between
background and object samples during training while applying Non-Maximum Suppression
(NMS) to eliminate duplicate boxes, retaining only the highest-confidence box. The result is an
output image with objects marked by bounding boxes and classification labels, demonstrating
RetinaNet's superior performance in complex object detection tasks.

Classification
Network

1
— classes; | NMS |~
]

Q Regression Network Non-

Maximum
Resnet FPN } Suppression
1

boxes}

Input Image Output Image

ResNet Network Feature Pyramid
Network

Cmmmmmm

Task-Specific Subnetworks

Figure 2. RetinaNet Model
2.2. Dataset configuration

This study uses the vehicles dataset [13], comprising 4,058 images with 12 detailed object
annotations, including various vehicle types such as cars, trucks, containers, pickups, and buses.
Due to memory limitations, the data was optimized to ensure efficient storage and processing.
Dataset details, including the number of images per object class and the distribution across
training, validation, and testing sets, are presented in Table 1.

Table 1. Dataset structure

Data Classification Number of Images Percentage (%)
Train 2634 65%
Valid 966 24%
Test 458 11%

Annotations for each image are provided in XML or JSON files, while images are stored in
JPG format. Each annotation includes information about bounding box coordinates, object class
(label), and the confidence level of each object. Bounding box coordinates are defined based on
the image’s coordinate system, enabling precise object localization.
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2.3. Experimental Platform

The experiments were conducted on Google Colab [14] with the following hardware
specifications: CPU: Intel Xeon E5-2667 v3; GPU: Nvidia P40-24Q with 24 GB GDDRS5 PCle
3.0 memory; RAM: 48 GB; Storage: 300 GB SSD.

3. Results and Discussion
3.1. Results after training the Model
3.1.1. Performance of the YOLOvE Model

We used YOLO integrated with Ultralytics as an encoder to optimize the training process to
extract features from input images. This approach eliminates the need for the model to learn basic
features from scratch, reducing the complexity of the training process and the number of parameters
to optimize. During experimentation, we used different learning rate (Ir) values, including 0.001,
0.005, and 0.01, along with a decay mechanism to determine the optimal rate for the working
environment. If the learning rate is too high, the model risks skipping the global optimum;
conversely, if the rate is too low, training can become slow or get stuck at a local optimum.

The training results of the YOLO model on the "Vehicle" dataset Figure 3 showed significant
improvements across epochs. Train/box_loss decreased from 1.4 to 1.0, train/cls_loss dropped
from 1.75 to 0.5, and train/dfl_loss reduced from 1.15 to 1.0 after 30 epochs, indicating the model
gradually learned to identify bounding boxes and classify labels more accurately. On the
validation set, val/box _loss decreased from 1.4 to 1.25, and val/cls_loss fell from 1.3 to 1.1, despite
slight fluctuations in the early stages. Precision and recall reached 0.6 and 0.65 by the end of
training, reflecting good accuracy and object detection capability.
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Figure 3. Results obtained from the Yolov8 Model
Table 2. Performance of the Yolov8 Model

Metric Epoch 1 Epoch 15 Epoch 30
GPU_mem 422G 4.09G 3.96G
Box_loss 1.418 1.101 0.9708
Cls_loss 1.861 0.6725 0.4767
DAl loss 1.177 1.034 0.9935
Instances 160 122 128
Size 640 640 640
Box(P) 0.405 0.463 0.484
Box(R) 0.353 0.594 0.615
mAPS50 0312 0.422 0.456
mAP50-95 0.198 0.288 0.33
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The mAPS50 steadily increased from 0.2 to 0.45, while mAP50-95 rose from 0.2 to 0.325,
indicating that the model's performance across various IoU thresholds still requires improvement.
These results confirm that the model performs effectively but requires further optimization to
enhance critical metrics like mAP50-95 (Table 2).

3.1.2. Performance of the PyTorch-RetinaNet Model

To optimize the training process, we combined Pytorch-RetinaNet with ResNet50 to use as a
feature extraction encoder for the input images. That way, the model does not need to learn the
base features from scratch, reducing the complexity of the training process and the total number
of parameters that need to be trained. We experimented with different learning rates (Ir), including
0.001, 0.005, and 0.01 and decreasing, to choose the best rate for the environment. Too high a
learning rate can cause the model to “jump” over the optimal point, while too low a learning rate
can lead to slow learning or getting stuck in a local optimum.

Losses over Epochs
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Figure 4. Line chart showing loss over epochs

Figure 4 shows a clear downward trend in loss values throughout the training process,
reflecting the model's improved efficiency over time. Specifically, the Classification Loss started
at approximately 0.25 and steadily decreased, falling below 0.2 by the end of training. This
indicates that the model has increasingly accurately classified objects in images. The training
process of the model over 30 epochs (Table 3) shows a significant performance improvement. In
the early stage (Epoch 0), Running Loss starts at a peak of about 1.15, while Classification Loss
and Regression Loss are 0.29986 and 0.55224, respectively.

Table 3. Performance of the RetinaNet Model

Metric Epoch 0 Epoch 15 Epoch 30
Iteration 219 219 219
Classication Losss 0.29986 0.12349 0.03676
Regression Loss 0.55224 0.27319 0.15524
Running Loss 1.16069 0.33964 0.21001

This shows that the initial model still has many prediction errors. Notably, the fastest loss
reduction rate occurs in the first 5 epochs, especially the Running Loss drops sharply from
1.16069 to about 1.16069. This proves that the model learns very effectively in the early training
stage. After that, the loss reduction rate slows down and becomes more stable from epoch 15
onwards. At epoch 15, the loss indices have decreased significantly with Running Loss at 0.33964,
Classification Loss at 0.12349 and Regression Loss at 0.27319. At the last epoch (epoch 30), the
model achieved the best performance with Running Loss at 0.21001, Classification Loss at
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0.03676 and Regression Loss at 0.15524. In particular, the number of iterations remained
unchanged (remained at 219) across epochs, indicating that the dataset size and batch size were
kept stable throughout the training process. The decreasing and stable trend of the loss curves also
indicates that the model has converged well and there is no sign of overfitting.

3.2. Comparison of PyTorch-RetinaNet and YOLOvS

Case with a Single Vehicle in the Image: In this scenario, both YOLO and RetinaNet
successfully detected the vehicle but RetinaNet (Figure 5) showed higher reliability with a
confidence score of 0.91 compared to YOLO 0.65 (Figure 6).

Figure 7. Detection of Multiple Objects with Figure 8. Detection of Multiple Objects with
RetinaNet YOLO
In situations with multiple overlapping or occluded vehicles, YOLO demonstrated superior
performance compared to RetinaNet. YOLO (Figure 8) detected 9 out of 12 objects with high
confidence (0.79 to 0.89), whereas RetinaNet (Figure 7) detected only 7 out of 12 objects with
lower confidence (0.51 to 0.002).

Case with Small or Blurry Vehicles:

car 0.45

Figure 9. Detection of Small or Blurry Objects  Figure 10. Detection of Small or Blurry Objects with
with RetinaNet Yolo
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RetinaNet generally outperformed YOLO in detecting small or blurry objects. Although
YOLO had higher confidence scores (0.45 compared to RetinaNet's 0.056 and 0.083), it
misclassified the objects, while RetinaNet (Figure 10) correctly identified both objects but with
lower confidence.

3.3. Overview of Comparison

By analyzing the performance of the two object recognition models YOLOvVS and Pytorch-
RetinaNet shown in Table 4, we can see that each model shows its advantages in different
situations. For explicit objects, RetinaNet shows superior performance with a score of 0.91,
significantly higher than YOLOvS8 (0.65), although both detect 1/1 objects correctly. This
difference stems from the ResNet-50 architecture that combines FPN and Focal Loss of
RetinaNet, allowing for multi-scale feature fusion and focusing on difficult patterns. However,
when dealing with overlapping and occluded objects, YOLOv8 performs much better with scores
ranging from 0.79 to 0.89 and detecting 9/12 objects, while RetinaNet only scores from 0.088 to
0.002 and detecting 7/12 objects. This advantage of YOLOvV8 comes from the Darknet-53
architecture with CSP blocks, a single-stage prediction method, and mosaic augmentation
techniques during training. For the case of small and blurry objects, although YOLOvS8 has a
higher score (0.45 compared to 0.056-0.083 of RetinaNet), RetinaNet detects more objects (2/2
compared to 1/2) thanks to the diverse anchor box mechanism and FPN. This shows that a high
score does not always mean better detection, and also makes it clear why YOLOVS is particularly
suitable for real-time applications with overlapping objects, while RetinaNet performs better with
clear and small objects. The choice of which model will depend on the specific requirements of
the application and the characteristics of the objects to be detected.

Table 4. Comparison of Yolov8 and Pytorch-RetinaNet

Criteria YOLOvVS PyTorch- RetinaNet Number of Objects Detected
Clear objects 0.65 091 1/1 (YOLO and RetinaNet)
Overlapping objects 0.79 to 0.89 0.088 to 0.002 9/12 (YOLO), 7/12 (RetinaNet)
Small, blurry objects 0.45 0.056 to 0.083 1/2 (YOLO), 2/2 (RetinaNet)

4. Conclusion

Processing image data poses a significant challenge due to its diversity and complexity,
including variations in features, ambiguities in label definitions, and the influence of external
factors such as lighting and background. In this study, the performance of two models, PyTorch-
RetinaNet and YOLOVS, is compared for object detection.

PyTorch-RetinaNet achieved a mAP50-95 of 24.7%, a mAP50 of 38.6%, and a mAP75 of
27.9%. It performed better with larger objects, achieving a mAP50-95 of 42%. In terms of recall,
the model reached AR@1 of 30.9%, AR@10 of 54.7%, and AR@100 of 55.9%.

Meanwhile, YOLOVS achieved a mAP50-95 of 33%, a mAP50 of 45.6%, a precision of 48.3%,
and a recall of 61.5%. Although YOLOVS had a lower mAP50-95 for larger objects, it stood out in
precision and recall, enabling effective detection even in complex scenarios such as overlapping
or occluded objects.

This study makes significant new contributions compared to previous works. While previous
studies such as Tan et al. [6] or Nife and Chtourou [7] focused on the old YOLOvV3 and
RetinaNet versions, our study is one of the first to evaluate in detail the performance of YOLOv8
- the latest version with many improvements in network architecture and algorithms - against
PyTorch-RetinaNet. In particular, we not only compare general performance metrics but also
analyze them in detail in three specific real-world scenarios (clear, overlapping/occluded, and
small/blurry objects), combining both quantitative analysis and visual illustrations. With a focus
on vehicle detection of 12 different types, the study provides a deeper understanding of the
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strengths and weaknesses of each model in smart traffic monitoring applications [10], going
beyond the general approach commonly found in previous studies [13]. Our results not only
contribute to the theory of object detection but also provide practical guidance for selecting
appropriate models in traffic monitoring applications based on the specific characteristics of each
situation [11], [12].
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