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ARTICLE INFO ABSTRACT 

Received: 23/01/2025 This study aims to evaluate and compare the effectiveness of two deep 
learning models - PyTorch-RetinaNet and YOLOv8 - for vehicle detection, 
addressing the challenges in object detection across varying size, shape, 
and lighting conditions. The research methodology utilized a 
comprehensive dataset of 4,058 vehicle images with 12 distinct object 
classes, implementing both models with varying learning rates (0.001, 
0.01, and 0.0001). The dataset was split into training (65%), validation 
(24%), and testing (11%) sets, with preprocessing techniques including 
image resizing, brightness normalization, and data augmentation applied to 
enhance model performance. The experimental results revealed distinct 
capabilities for each model: PyTorch-RetinaNet achieved a mAP50 of 
38.6% and mAP50-95 of 24.7%, exhibiting particular strength in detecting 
large objects (mAP50-95 of 42.0%) and maintaining stable recall metrics 
(AR@1: 30.9%, AR@10: 54.7%, AR@100: 55.9%). In contrast, YOLOv8 
demonstrated superior overall performance with a mAP50 of 45.6%, 
mAP50-95 of 33.0%, precision of 48.3%, and recall of 61.5%, particularly 
excelling in handling overlapping objects with confidence scores of 0.79-
0.89. The findings suggest YOLOv8 is more suitable for real-time 
applications, while PyTorch-RetinaNet excels in scenarios requiring 
precise detection across varying object sizes. 
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài: 23/01/2025 Nghiên cứu này nhằm mục đích đánh giá và so sánh hiệu quả của hai mô 
hình học sâu - PyTorch-RetinaNet và YOLOv8 để phát hiện phương tiện, 
giải quyết các thách thức trong việc phát hiện đối tượng trên nhiều kích 
thước, hình dạng và điều kiện ánh sáng khác nhau. Phương pháp nghiên cứu 
sử dụng một tập dữ liệu gồm 4.058 hình ảnh xe với 12 lớp đối tượng riêng 
biệt, triển khai cả hai mô hình với tốc độ học khác nhau (0,001, 0,01 và 
0,0001). Tập dữ liệu được chia thành các tập huấn luyện (65%), xác thực 
(24%) và thử nghiệm (11%), với các kỹ thuật xử lý trước bao gồm thay đổi 
kích thước hình ảnh, chuẩn hóa độ sáng và tăng cường dữ liệu được áp dụng 
để nâng cao hiệu suất của mô hình. Kết quả thử nghiệm cho thấy mô hình 
PyTorch-RetinaNet đạt được mAP50 là 38,6% và mAP50-95 là 24,7%, đặc 
biệt trong việc phát hiện các vật thể lớn (mAP50-95 là 42,0%) và duy trì số 
liệu thu hồi ổn định (AR@1: 30,9%, AR@10: 54,7%, AR@100: 55,9%). 
Ngược lại, YOLOv8 cho thấy hiệu suất tổng thể vượt trội với mAP50 là 
45,6%, mAP50-95 là 33,0%, độ chính xác là 48,3% và khả năng thu hồi là 
61,5%, đặc biệt trong việc xử lý các đối tượng chồng chéo với điểm tin cậy 
là 0,79-0,89. Các phát hiện cho thấy YOLOv8 phù hợp hơn với các ứng 
dụng thời gian thực, trong khi PyTorch-RetinaNet nổi bật hơn trong các tình 
huống đòi hỏi phát hiện chính xác trên các kích thước đối tượng khác nhau. 
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1. Introduction 

Object detection and classification face significant challenges in handling diverse object sizes, 
shapes, and lighting conditions, particularly in vehicle detection applications. These challenges 
are compounded by the limited availability of comprehensive datasets representing real-world 
scenarios. While convolutional neural networks (CNNs) have shown promising results in object 
detection [1], achieving high accuracy and processing speed remains a critical challenge. 
PyTorch-RetinaNet with ResNet-50 [2], [3] and YOLOv8 with Darknet-53 [4] - perform 
specifically in vehicle detection scenarios where objects frequently overlap and vary in size. This 
study aims to address this gap by systematically comparing both models using a diverse vehicle 
dataset of 4,058 images [5], evaluating their performance across different operating conditions to 
provide clear insights for selecting appropriate architectures in vehicle detection applications. 

Recent research has explored various solutions to these challenges. Studies comparing 
RetinaNet and YOLOv3 for real-time detection tasks have shown that RetinaNet achieves higher 
accuracy (mAP: 82.89%) but slower processing (17 FPS), while YOLOv3 offers faster detection 
(51 FPS) with competitive accuracy (mAP: 80.69%) [6]. Additional research by Nife et al [7] has 
confirmed these trade-offs between speed and accuracy in various application scenarios. Reis [8] 
et al presents two YOLOv8 models for real-time flying object detection: a generalized model 
trained on 40 object classes (mAP50: 79.2%, mAP50-95: 68.5%, 50 FPS at 1080p) and a refined 
model using transfer learning for real-world conditions (mAP50: 99.1%, mAP50-95: 83.5%, 50 
FPS at 1080p). Recent studies advance object detection: Tan et al [9] evaluates YOLOv3 and 
SSD for unmanned driving, Guo et al [10] improves YOLOv8n-seg with FasterNet, CBAM, and 
WIoU loss function achieving 98.3% car detection accuracy. At the same time, YOLOv8's 
architecture demonstrates effectiveness in detecting flying objects with varying conditions. 

2. Proposed method 
2.1. Problem Model 

2.1.1. Yolo 

Figure 1 illustrates the process of using the YOLOv8 model to detect vehicles on the road. 
The upper part shows a frame from a traffic surveillance camera, reflecting a street scene with 
multiple moving vehicles. YOLOv8 analyzes the frame to identify the vehicles. 

 
Figure 1. YOLO Model 
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The model processes the input image and determines vehicle locations. The result is shown in 
the lower part, where the original frame is updated with bounding boxes around detected 
vehicles. These boxes help users easily identify and track vehicles on the road, demonstrating the 
effectiveness of object detection technology in traffic monitoring. 

2.1.2. RetinaNet 

RetinaNet is a deep neural network architecture that integrates ResNet and Feature 
Pyramid Networks (FPN) for object detection (Figure 2). The processing begins when the input 
image (such as a snowy landscape with objects like cars and trees) is passed through ResNet - a 
powerful CNN that extracts key features from raw pixels into elements like edges, corners, and 
shapes [11]. Next, FPN constructs features at multiple levels, allowing the model to process 
objects of various sizes, from large (like vehicles) to small (like license plates) [12]. These 
features are then fed into two specialized sub- networks: a classification network for identifying 
object labels and a regression network for predicting precise locations through bounding box 
generation. RetinaNet employs the Focal Loss function to handle the imbalance between 
background and object samples during training while applying Non-Maximum Suppression 
(NMS) to eliminate duplicate boxes, retaining only the highest-confidence box. The result is an 
output image with objects marked by bounding boxes and classification labels, demonstrating 
RetinaNet's superior performance in complex object detection tasks. 

 
Figure 2. RetinaNet Model 

2.2. Dataset configuration 

This study uses the vehicles dataset [13], comprising 4,058 images with 12 detailed object 
annotations, including various vehicle types such as cars, trucks, containers, pickups, and buses. 
Due to memory limitations, the data was optimized to ensure efficient storage and processing. 
Dataset details, including the number of images per object class and the distribution across 
training, validation, and testing sets, are presented in Table 1. 

Table 1. Dataset structure 
Data Classification Number of Images Percentage (%) 

Train 2634 65% 
Valid 966 24% 
Test 458 11% 

Annotations for each image are provided in XML or JSON files, while images are stored in 
JPG format. Each annotation includes information about bounding box coordinates, object class 
(label), and the confidence level of each object. Bounding box coordinates are defined based on 
the image’s coordinate system, enabling precise object localization. 
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2.3. Experimental Platform 

The experiments were conducted on Google Colab [14] with the following hardware 
specifications: CPU: Intel Xeon E5-2667 v3; GPU: Nvidia P40-24Q with 24 GB GDDR5 PCIe 
3.0 memory; RAM: 48 GB; Storage: 300 GB SSD. 

3. Results and Discussion 

3.1. Results after training the Model 

3.1.1. Performance of the YOLOv8 Model 

We used YOLO integrated with Ultralytics as an encoder to optimize the training process to 
extract features from input images. This approach eliminates the need for the model to learn basic 
features from scratch, reducing the complexity of the training process and the number of parameters 
to optimize. During experimentation, we used different learning rate (lr) values, including 0.001, 
0.005, and 0.01, along with a decay mechanism to determine the optimal rate for the working 
environment. If the learning rate is too high, the model risks skipping the global optimum; 
conversely, if the rate is too low, training can become slow or get stuck at a local optimum. 

The training results of the YOLO model on the "Vehicle" dataset Figure 3 showed significant 
improvements across epochs. Train/box_loss decreased from 1.4 to 1.0, train/cls_loss dropped 
from 1.75 to 0.5, and train/dfl_loss reduced from 1.15 to 1.0 after 30 epochs, indicating the model 
gradually learned to identify bounding boxes and classify labels more accurately. On the 
validation set, val/box_loss decreased from 1.4 to 1.25, and val/cls_loss fell from 1.3 to 1.1, despite 
slight fluctuations in the early stages. Precision and recall reached 0.6 and 0.65 by the end of 
training, reflecting good accuracy and object detection capability. 

 

Figure 3. Results obtained from the Yolov8 Model 

Table 2. Performance of the Yolov8 Model 

Metric Epoch 1 Epoch 15 Epoch 30 
GPU_mem 4.22G 4.09G 3.96G 

Box_loss 1.418 1.101 0.9708 
Cls_loss 1.861 0.6725 0.4767 
Dfl_loss 1.177 1.034 0.9935 

Instances 160 122 128 
Size 640 640 640 

Box(P) 0.405 0.463 0.484 
Box(R) 0.353 0.594 0.615 
mAP50 0.312 0.422 0.456 

mAP50-95 0.198 0.288 0.33 
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The mAP50 steadily increased from 0.2 to 0.45, while mAP50-95 rose from 0.2 to 0.325, 
indicating that the model's performance across various IoU thresholds still requires improvement. 
These results confirm that the model performs effectively but requires further optimization to 
enhance critical metrics like mAP50-95 (Table 2). 

3.1.2. Performance of the PyTorch-RetinaNet Model 

To optimize the training process, we combined Pytorch-RetinaNet with ResNet50 to use as a 
feature extraction encoder for the input images. That way, the model does not need to learn the 
base features from scratch, reducing the complexity of the training process and the total number 
of parameters that need to be trained. We experimented with different learning rates (lr), including 
0.001, 0.005, and 0.01 and decreasing, to choose the best rate for the environment. Too high a 
learning rate can cause the model to “jump” over the optimal point, while too low a learning rate 
can lead to slow learning or getting stuck in a local optimum. 

 

 

Figure 4. Line chart showing loss over epochs 

Figure 4 shows a clear downward trend in loss values throughout the training process, 
reflecting the model's improved efficiency over time. Specifically, the Classification Loss started 
at approximately 0.25 and steadily decreased, falling below 0.2 by the end of training. This 
indicates that the model has increasingly accurately classified objects in images. The training 
process of the model over 30 epochs (Table 3) shows a significant performance improvement. In 
the early stage (Epoch 0), Running Loss starts at a peak of about 1.15, while Classification Loss 
and Regression Loss are 0.29986 and 0.55224, respectively. 

Table 3. Performance of the RetinaNet Model 

Metric Epoch 0 Epoch 15 Epoch 30 
Iteration 219 219 219 

Classication Losss 0.29986 0.12349 0.03676 
Regression Loss 0.55224 0.27319 0.15524 
Running Loss 1.16069 0.33964 0.21001 

This shows that the initial model still has many prediction errors. Notably, the fastest loss 
reduction rate occurs in the first 5 epochs, especially the Running Loss drops sharply from 
1.16069 to about 1.16069. This proves that the model learns very effectively in the early training 
stage. After that, the loss reduction rate slows down and becomes more stable from epoch 15 
onwards. At epoch 15, the loss indices have decreased significantly with Running Loss at 0.33964, 
Classification Loss at 0.12349 and Regression Loss at 0.27319. At the last epoch (epoch 30), the 
model achieved the best performance with Running Loss at 0.21001, Classification Loss at 
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0.03676 and Regression Loss at 0.15524. In particular, the number of iterations remained 
unchanged (remained at 219) across epochs, indicating that the dataset size and batch size were 
kept stable throughout the training process. The decreasing and stable trend of the loss curves also 
indicates that the model has converged well and there is no sign of overfitting. 

3.2. Comparison of PyTorch-RetinaNet and YOLOv8 

Case with a Single Vehicle in the Image: In this scenario, both YOLO and RetinaNet 
successfully detected the vehicle but RetinaNet (Figure 5) showed higher reliability with a 
confidence score of 0.91 compared to YOLO 0.65 (Figure 6). 

 
Figure 5. Detection of a Single Object by RetinaNet 

 
Figure 6. Detection of a Single Object by YOLO 

Case with Multiple Overlapping Vehicles:  

Figure 7. Detection of Multiple Objects with 
RetinaNet 

Figure 8. Detection of Multiple Objects with 
YOLO 

In situations with multiple overlapping or occluded vehicles, YOLO demonstrated superior 
performance compared to RetinaNet. YOLO (Figure 8) detected 9 out of 12 objects with high 
confidence (0.79 to 0.89), whereas RetinaNet (Figure 7) detected only 7 out of 12 objects with 
lower confidence (0.51 to 0.002). 
 

Case with Small or Blurry Vehicles:  

Figure 9. Detection of Small or Blurry Objects 
with RetinaNet 

Figure 10. Detection of Small or Blurry Objects with 
Yolo 
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RetinaNet generally outperformed YOLO in detecting small or blurry objects. Although 
YOLO had higher confidence scores (0.45 compared to RetinaNet's 0.056 and 0.083), it 
misclassified the objects, while RetinaNet (Figure 10) correctly identified both objects but with 
lower confidence. 

3.3. Overview of Comparison 

By analyzing the performance of the two object recognition models YOLOv8 and Pytorch-
RetinaNet shown in Table 4, we can see that each model shows its advantages in different 
situations. For explicit objects, RetinaNet shows superior performance with a score of 0.91, 
significantly higher than YOLOv8 (0.65), although both detect 1/1 objects correctly. This 
difference stems from the ResNet-50 architecture that combines FPN and Focal Loss of 
RetinaNet, allowing for multi-scale feature fusion and focusing on difficult patterns. However, 
when dealing with overlapping and occluded objects, YOLOv8 performs much better with scores 
ranging from 0.79 to 0.89 and detecting 9/12 objects, while RetinaNet only scores from 0.088 to 
0.002 and detecting 7/12 objects. This advantage of YOLOv8 comes from the Darknet-53 
architecture with CSP blocks, a single-stage prediction method, and mosaic augmentation 
techniques during training. For the case of small and blurry objects, although YOLOv8 has a 
higher score (0.45 compared to 0.056-0.083 of RetinaNet), RetinaNet detects more objects (2/2 
compared to 1/2) thanks to the diverse anchor box mechanism and FPN. This shows that a high 
score does not always mean better detection, and also makes it clear why YOLOv8 is particularly 
suitable for real-time applications with overlapping objects, while RetinaNet performs better with 
clear and small objects. The choice of which model will depend on the specific requirements of 
the application and the characteristics of the objects to be detected. 

Table 4. Comparison of Yolov8 and Pytorch-RetinaNet 

Criteria YOLOv8 PyTorch- RetinaNet Number of Objects Detected 
Clear objects 0.65 0.91 1/1 (YOLO and RetinaNet) 

Overlapping objects 0.79 to 0.89 0.088 to 0.002 9/12 (YOLO), 7/12 (RetinaNet) 
Small, blurry objects 0.45 0.056 to 0.083 1/2 (YOLO), 2/2 (RetinaNet) 

4. Conclusion 

Processing image data poses a significant challenge due to its diversity and complexity, 
including variations in features, ambiguities in label definitions, and the influence of external 
factors such as lighting and background. In this study, the performance of two models, PyTorch-
RetinaNet and YOLOv8, is compared for object detection. 

PyTorch-RetinaNet achieved a mAP50-95 of 24.7%, a mAP50 of 38.6%, and a mAP75 of 
27.9%. It performed better with larger objects, achieving a mAP50-95 of 42%. In terms of recall, 
the model reached AR@1 of 30.9%, AR@10 of 54.7%, and AR@100 of 55.9%. 

Meanwhile, YOLOv8 achieved a mAP50-95 of 33%, a mAP50 of 45.6%, a precision of 48.3%, 
and a recall of 61.5%. Although YOLOv8 had a lower mAP50-95 for larger objects, it stood out in 
precision and recall, enabling effective detection even in complex scenarios such as overlapping 
or occluded objects. 

This study makes significant new contributions compared to previous works. While previous 
studies such as Tan et al. [6] or Nife and Chtourou [7] focused on the old YOLOv3 and 
RetinaNet versions, our study is one of the first to evaluate in detail the performance of YOLOv8 
- the latest version with many improvements in network architecture and algorithms - against 
PyTorch-RetinaNet. In particular, we not only compare general performance metrics but also 
analyze them in detail in three specific real-world scenarios (clear, overlapping/occluded, and 
small/blurry objects), combining both quantitative analysis and visual illustrations. With a focus 
on vehicle detection of 12 different types, the study provides a deeper understanding of the 
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strengths and weaknesses of each model in smart traffic monitoring applications [10], going 
beyond the general approach commonly found in previous studies [13]. Our results not only 
contribute to the theory of object detection but also provide practical guidance for selecting 
appropriate models in traffic monitoring applications based on the specific characteristics of each 
situation [11], [12]. 
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