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Received: 10/02/2025 This paper investigates model order reduction for a 30th-order IIR filter 
in telecommunication systems with the objectives of simplifying the 
structure, preserving dynamic characteristics, and reducing 
computational costs. Two algorithms, Modal Truncation and Balanced 
Truncation, are compared at reduced orders r = 13 and r = 15. At order 
13, the H∞ and H₂ errors for Balanced Truncation are 1.109873×10⁻² 
and 5.661614×10⁻³, respectively, which are lower than those for Modal 
Truncation, recorded at 2.097335×10⁻² and 1.805762×10⁻². Response 
analysis shows that with Balanced Truncation, after 30 seconds the 
time response of the reduced-order system closely follows that of the 
original system, and the frequency response above 10 rad/s also 
approximates that of the original system, whereas Modal Truncation 
consistently produces significant discrepancies. At order 15, the errors 
for Balanced Truncation further decrease (H∞: 1.233049×10⁻³, H₂: 
8.219160×10⁻⁴) with the response nearly matching the original system, 
while Modal Truncation continues to exhibit substantial deviations. The 
results confirm that Balanced Truncation is a superior choice over 
Modal Truncation for model order reduction of IIR filters in 
telecommunication and signal processing applications. 
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SO SÁNH, ĐÁNH GIÁ KỸ THUẬT CẮT NGẮN PHƯƠNG THỨC  
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài: 10/02/2025 Bài báo nghiên cứu giảm bậc mô hình cho bộ lọc IIR bậc 30 trong hệ 
thống viễn thông nhằm đơn giản hóa cấu trúc, bảo toàn đặc tính động 
lực học và giảm chi phí tính toán. Hai thuật toán Cắt ngắn phương thức 
và Cắt ngắn cân bằng được so sánh ở các bậc r = 13 và r = 15. Ở bậc 13, 
sai số H∞ và H₂ của Cắt ngắn phương thức lần lượt là 1,109873×10⁻² và 
5,661614×10⁻³, thấp hơn so với Cắt ngắn phương thức là 
2,097335×10⁻² và 1,805762×10⁻². Phân tích đáp ứng cho thấy, với Cắt 
ngắn cân bằng, sau 30 giây đáp ứng thời gian của hệ giảm bậc bám sát 
với hệ gốc, và đáp ứng tần số trên 10 rad/s cũng xấp xỉ với hệ gốc, trong 
khi Cắt ngắn phương thức luôn cho sai khác đáng kể. Ở bậc 15, sai số 
của Cắt ngắn cân bằng giảm nhiều hơn (H∞: 1,233049×10⁻³, H2: 
8,219160×10⁻⁴) với đáp ứng gần như trùng khớp với hệ gốc, còn Cắt 
ngắn phương thức vẫn sai khác đáng kể. Kết quả khẳng định Cắt ngắn 
cân bằng là lựa chọn ưu việt trong việc giảm bậc bộ lọc IIR cho các ứng 
dụng viễn thông và xử lý tín hiệu. 
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1. Introduction 

In telecommunications networks, filters play a crucial role in ensuring signal quality and 
optimizing transmission performance. They operate by allowing certain frequencies to pass while 
blocking unwanted ones, thereby cleaning the signal and minimizing interference. Filters can be 
categorized into various types, including low‑pass, high‑pass, band‑pass, and band‑stop filters, 
each serving specific purposes in signal conditioning and processing. Their significance lies in 
improving signal quality as well as optimizing bandwidth, reducing latency, and enhancing the 
overall performance of telecommunication systems. In the context of the ever-advancing 
information and communication technology, the effective use of filters enhances data 
transmission capabilities, ensuring that information is conveyed accurately and reliably. This is 
particularly important in applications such as television, mobile communications, and the 
Internet, where signal quality directly affects the user experience. Owing to their ability to 
condition and process signals, filters have become an indispensable component in the design of 
modern telecommunication systems [1], [2]. 

High-order filters in telecommunication systems and signal processing typically deliver 
superior performance; however, they are also computationally complex. The sophisticated 
algorithms required for their analysis and design demand significant computational resources, 
which increases processing time and complicates implementation—especially when stringent 
reliability and compatibility with existing systems are required. The heavy computational load 
can restrict data processing speeds, thereby affecting system responsiveness, particularly in real-
time applications. To address these challenges, the use of auxiliary tools becomes essential. 
Techniques such as simulation and modeling can help alleviate the complexity of high-order 
filters by allowing researchers to test and optimize designs in a virtual environment prior to 
actual deployment. Moreover, object recognition technology can further streamline the 
development process by automating the analysis and optimization of filter parameters [3]. 

In this context, model order reduction has emerged as an important method under active 
research and development, with wide-ranging applications in various fields. This approach allows 
for the simplification of complex models while maintaining the requisite accuracy, thereby 
improving performance and reducing computational costs. Model order reduction has been 
applied to optimize filter designs for large-scale data transmission systems, enhancing signal 
processing capabilities and minimizing latency [4]. 

Among model order reduction techniques, two algorithms—Modal Truncation (MT) and 
Balanced Truncation (BT)—stand out as predominant due to their ability to preserve critical 
properties of the original system. These two algorithms not only form the foundation for many 
other model reduction methods but also open new avenues for applications in fields such as 
signal processing, telecommunications, robotics, and control systems. The flexibility and 
adaptability of MT and BT have led to their widespread adoption in both research and practical 
applications, contributing to improved performance and reduced computational costs in the 
development of complex models. 

Modal Truncation (MT) focuses on retaining the dynamic modes that most significantly 
influence the behavior of the system, thereby ensuring the stability of the reduced model. 
Additionally, MT preserves crucial information such as pole locations and zero dynamics, which 
is essential for maintaining system performance [5] - [7]. 

Balanced Truncation (BT) provides an approach based on balancing the states of the system. 
This algorithm not only preserves stability but also retains the eigenvalues and Hankel singular 
values, thereby ensuring that the important dynamic characteristics of the original system are 
maintained. BT is commonly applied in fields such as automatic control and signal processing, 
where preserving system quality and accuracy is of paramount importance [8] – [10]. 
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Recognizing the importance and complexity of high-order filters in signal processing, the 
authors have investigated and applied the MT and BT algorithms for the model order reduction of 
these filters, with the goal of simplifying the models while preserving essential characteristics 
such as stability and performance. An analysis and comparison of the capabilities of these two 
techniques for high-order filters was carried out in [11], thereby evaluating their effectiveness in 
preserving the essential information of the original system. Comparing these two methods 
facilitates the selection of specific filter types, thereby opening new research directions in the 
design and improvement of high-order systems. The significance of this study lies not only in 
providing insights into the effectiveness of model order reduction algorithms but also in laying 
the foundation for further developments in the fields of telecommunication signal processing and 
control, while simultaneously reducing computational costs and deployment time. 

2. Materials and Methods 

Modeling filters in telecommunication electronic systems as Linear Time-Invariant (LTI) 
systems not only provides deep insights into system behavior but also supports the design and 
optimization of filter performance. By employing differential equations, state-space matrices, and 
transfer functions, engineers can develop effective solutions for complex problems in 
telecommunications. In telecommunication electronic systems, filters are modeled as LTI 
systems to facilitate efficient analysis and design. This model is typically represented by 
differential equations, state-space matrices, and transfer functions, which describe the interaction 
between the system’s input and output, as shown in (1). 

     
          1( ) : :  : ( )
t t t
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where ;; ;n m n m n m n m      A C DBR R R R , n represents the number of state variables (the 
system’s order), while m represents the number of inputs and, in a square system, the number of 
outputs. 

The system of differential equations describes the time evolution of state variables, enabling 
the analysis of the system’s dynamic behavior. The state matrix A represents the relationships 
among state variables, while the matrix B defines how the input influences these states. The 
matrix C converts the state variables into the output yy, and the matrix D captures the direct 
effect of the input on the output. The state vector x(t) contains information about the system’s 
state, and the input vector u(t) provides the necessary signals to control the system, affecting the 
output y(t) through matrices B and D. The transfer function H(s) facilitates the analysis of the 
filter’s frequency response, thereby enhancing the understanding of the system’s filtering 
characteristics. 

Two model order reduction algorithms—BT and MT—preserve the stability of the original 
system because: 

- MT: In a stable original system, the eigenvalues (or poles) have negative real parts. By 
eliminating modes (i.e., eigenvalues or poles with negligible contribution) and retaining only the 
stable modes, the stability of the system is preserved. 

- BT: For a stable original system, the controllability and observability Gramians are positive 
definite, which allows the system to be transformed into a balanced realization. Sorting according 
to the Hankel singular values (HSV) ensures that when states with small (less influential) values 
are discarded, the dominant HSVs—carrying the stability information—are retained, thereby 
maintaining the stability of the reduced-order system. 

2.1. Modal Truncation Algorithm 

Modal truncation (MT) is a model order reduction technique that optimizes system accuracy 
by retaining only the most significant dynamic modes. The principle of this algorithm is based on 
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analyzing the eigenvalues and eigenvectors of the state matrix. By identifying the dominant 
modes, the algorithm permits the elimination of less influential modes, thereby yielding a simpler 
model that still preserves the essential characteristics of the system's behavior. Total Cost for the 
MT Algorithm: O(2n³ + n log n + n²r + nr² + nrm + mnr + m²). The steps for implementing the 
MT algorithm are as follows [5] – [7]: 

Input: A minimal, stable LTI system modeled as in (1). 
- Step 1: Compute the eigenvalues of the matrix A as in (2). 

, 1, 2, , .i i iv v i n  A  (2)

- Step 2: Construct the modal transformation matrix and its inverse as in (3) and (4), where Λ 
is the diagonal matrix containing the eigenvalues of A. 

 1 2 nv v vV   (3)
1A VΛV  (4)

- Step 3: Choose the reduction order r such that r < n. 
- Step 4: Determine the matrices J and K by selecting the first r columns of V and the first r 

rows of V−1, respectively, and then taking the transpose, as given in (5) and (6). 

1 2[ ]rv v v J  (5)
1

1:( )T

r

K V  (6)

- Step 5: Construct the reduced-order system using MT as in (7). 

_ _ _ _; ; ;T T

r MT r MT r MT r MT   A K AJ B K B C CJ D D  (7)
 

Output: The reduced-order system (Ar_MT, Br_MT, Cr_MT, Dr_MT) 

2.2. Balanced Truncation Algorithm 

Balanced truncation (BT) is a model order reduction technique based on the principle of 
optimizing the balance between the system states. The operating principle of this algorithm begins 
with determining the eigenvalues and Hankel singular values of the state matrix, which allows for 
assessing the relative importance of each state in the model. This process enables the identification 
of states that contribute less to the overall system behavior, so they can be removed without 
sacrificing critical dynamic characteristics. Total Cost for the BT Algorithm: O(6n³ + rn² + r²n + 
rnm + mnr + m²). The steps for implementing the BT algorithm are detailed as follows [8] – [10]: 

Input: A minimal, stable LTI system modeled as in (1). 
- Step 1: Solve the two Lyapunov equations (8) and (9) to obtain the two Gramian matrices P and Q. 

T T  PA BB AP  (8)
T T  QA Α Q C C  (9)

- Step 2: Perform the Cholesky decompositions of P and Q as in (10). 

;T T P XX Q YY  (10)

- Step 3: Compute the singular value decomposition (SVD) as in (11). 
TT Y X ZSV  (11)

- Step 4: Calculate the balancing transformation matrix as in (12). 
1 1

12 2; T T  T XVS T S Z Y  (12)

- Step 5: Choose the reduction order r such that r < n. 
- Step 6: Construct the reduced-order system using BT as in (13). 

   1 1

_ _ _ _:,1: :,1:1: ,: 1: ,:
; ;;r BT r BT r BT r BTr rr r

           D DA T A T B T B C C T  (13)
 

Output: The reduced-order system (Ar_BT, Br_BT, Cr_BT, Dr_BT) 
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3. Results and Discussion 

IIR filters are one of the key tools in the fields of digital signal processing, communications, 
and automatic control. A notable characteristic of IIR filters is their ability to maintain an infinite 
impulse response; that is, the output depends not only on the current input value but also on 
previous values of both the input and the output. This creates a complex yet efficient structure, 
enabling IIR filters to perform filtering tasks with high accuracy and fast speed. The 30th-order 
IIR filter described in [11] is characterized by its frequency-domain transfer function, which is 
typically expressed as H(z)=num(z)/den(z) 

Table 1. Error Norms for BT and MT Model Reductions 

Order H∞ Error of BT H₂ Error of BT H∞ Error of MT H₂ Error of MT 
1 2.154578 × 10⁻¹ 4.303870 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
2 1.666771 × 10⁻¹ 2.574064 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
3 2.562261 × 10⁻¹ 5.123302 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
4 7.670426 × 10⁻² 1.638993 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
5 1.058352 × 10⁻¹ 1.975598 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
6 8.626133 × 10⁻² 1.843855 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
7 4.931243 × 10⁻² 1.515404 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
8 4.334173 × 10⁻² 1.383072 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
9 1.292261 × 10⁻¹ 1.916838 × 10⁻² 2.097335 × 10⁻² 1.805762 × 10⁻² 
10 2.377069 × 10⁻² 9.306082 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
11 1.767061 × 10⁻² 7.082775 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
12 1.945926 × 10⁻² 9.185476 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
13 1.109873 × 10⁻² 5.661614 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
14 1.736619 × 10⁻² 5.590331 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
15 1.233049 × 10⁻³ 8.219160 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
16 1.607460 × 10⁻³ 7.703399 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
17 9.684134 × 10⁻⁴ 7.790724 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
18 2.673510 × 10⁻³ 1.308143 × 10⁻³ 2.097335 × 10⁻² 1.805762 × 10⁻² 
19 7.822645 × 10⁻⁴ 3.677773 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
20 1.728265 × 10⁻³ 7.239217 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
21 1.115209 × 10⁻³ 5.241464 × 10⁻⁴ 2.097335 × 10⁻² 1.805762 × 10⁻² 
22 7.701682 × 10⁻⁵ 3.978911 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
23 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
24 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
25 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
26 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
27 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
28 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 
29 5.314077 × 10⁻⁵ 3.235979 × 10⁻⁵ 2.097335 × 10⁻² 1.805762 × 10⁻² 

By applying the Tustin transformation, z = s + 1, we obtain the transfer function: 
H(s)=num(s)/den(s), with 
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By applying the MT and BT algorithms to this IIR filter, we perform model order reduction on 
the system, reducing its original order of 30 down to order 1. By calculating the reduction errors in 
terms of the H∞ and H2 norms, we obtained the corresponding errors as shown in Table 1. 

From Table 1, we observe differences between the two reduction methods: BT and MT, based 
on the H∞ and H2 error norms. For BT, both the H∞ and H2 errors gradually decrease as the 
reduced order r increases toward the original order. This indicates that BT is capable of 
preserving and reproducing the main dynamic characteristics of the original system as more 
states are retained, thereby minimizing the overall deviation in the response of the reduced 
model. In contrast, the MT method produces rather invariant results regardless of the value of r. 
This invariance may suggest that, in its current implementation, the MT algorithm yields a 
reduced model with a fixed response structure, thereby failing to leverage the advantage of 
increasing the number of modes to enhance accuracy. 

When reducing the model order for the IIR filter [11], it is observed that besides choosing an 
order that minimizes the error, other factors must also be considered, such as: a lower reduced 
order is preferable, and the time-domain as well as the frequency-domain responses of the 
original and reduced systems should match as closely as possible in terms of shape, characteristic 
curves, and data patterns. Therefore, after progressively reducing the original 30th-order system 
down to a 1st-order system while balancing these factors, the authors chose to reduce the original 
system to the 13th and 15th orders. 

Choosing reduced orders of 13 and 15, we obtain the time-domain and frequency-domain 
responses of the original system versus the reduced-order systems obtained using BT and MT, as 
shown in Figures 1, 2, 3, and 4. 

For a reduced order r = 13: 
- From the impulse response plot in Figure 1, we observe that: 
+ Over the entire simulated time domain, the order-13 reduced system obtained using MT 

exhibits a response that deviates significantly from that of the original system. 
+ When BT is used to reduce the original system to order 13, the reduced system’s response 

shows slight discrepancies with the original system for time intervals shorter than 30 seconds; 
however, for time intervals longer than 30 seconds, the data curve of the reduced system adheres 
more closely to that of the original system. 

+ Consequently, the order-13 reduced system obtained using BT can be considered as a 
substitute for the original system in time-domain applications, especially for time intervals 
exceeding 30 seconds. 

 

Figure 1. Impulse response plots of the original system and the reduced 13th-order systems 

- From the Bode plot in Figure 2, we observe that: 
+ In the frequency range below 10 rad/s, both the order-13 reduced systems obtained using 

BT and MT exhibit magnitude and phase responses that differ from those of the original system; 
however, at frequencies above 10 rad/s, the response of the order-13 reduced system gradually 
approximates that of the original system, with the BT reduced system’s data curve aligning most 
closely with the original system. 



TNU Journal of Science and Technology 230(07): 19 - 27 
 

http://jst.tnu.edu.vn                                                  25                                                 Email: jst@tnu.edu.vn 

+ Over the entire simulated frequency range, the frequency response of the order-13 reduced 
system obtained using BT approximates that of the original system more closely than does the 
response of the order-13 reduced system obtained using MT. 

+ Therefore, the order-13 reduced system obtained using BT can be considered as a substitute 
for the original system in frequency-domain applications for frequencies above 10 rad/s. 

 

Figure 2. Bode plots of the original system and the reduced 11th-order systems 

For a reduced order r = 15: 
- From the impulse response plot in Figure 3, we observe that: 
+ Over the entire simulated time domain, the order-15 reduced system obtained using MT still 

exhibits a response that deviates significantly from that of the original system, whereas the order-
15 reduced system obtained using BT coincides with the original system. 

+ Consequently, the order-15 reduced system obtained using BT can be considered as a 
substitute for the original system in time-domain applications, thereby reducing complexity 
compared to the 30th-order original system. 

 

Figure 3. Impulse response plots of the original system and the reduced 15th-order systems 

- From the Bode plot in Figure 4, we observe that: 
+ In the frequency range below 10 rad/s, the order-15 reduced system obtained using MT 

exhibits magnitude and phase responses that differ from those of the original system; however, at 
frequencies above 10 rad/s, the response of the reduced system gradually approximates that of the 
original system. 

+ Over the entire simulated frequency range, the frequency response of the order-15 reduced 
system obtained using BT nearly coincides with that of the original system. 
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+ Therefore, the order-15 reduced system obtained using BT can be considered as a substitute 
for the original system in frequency-domain applications, thereby reducing complexity compared 
to the 30th-order original system. 

 

Figure 4. Bode plots of the original system and the reduced 15th-order systems 

General Evaluation: Based on the reduction error table and the responses of the reduced-
order system compared to the original system in both the time and frequency domains, it is 
evident that for reducing the order of the IIR filter [11], the BT algorithm provides superior 
reduction quality over the MT algorithm at every reduced order. 

4. Conclusion 

In this study, we applied and compared two model order reduction algorithms—Modal 
Truncation (MT) and Balanced Truncation (BT)—on a 30th-order IIR filter. By calculating the 
reduction errors in the H∞ and H2 norms, as well as evaluating the time-domain and frequency-
domain responses, BT demonstrated excellent performance in reducing the model order. 
Specifically, the H∞ error decreased from approximately 2.15×10−1 to 1.23×10−3 at order 15 and 
stabilized at 5.31×10−5 when the reduced order reached or exceeded 22, while the H2 error 
decreased correspondingly, reaching about 9.31×10−3 at order 15 and stabilizing around 
3.24×10−5 for higher orders. Additionally, BT effectively preserved the system's dynamic 
characteristics, as evidenced by the time-domain and frequency-domain responses; in particular, 
for frequencies above 10 rad/s, the BT-reduced models at orders 13 and 15 maintained almost all 
the features of the original system. In contrast, MT exhibited a constant reduction error—
regardless of the number of retained states, the H∞ error remained approximately 2.10×10−2 and 
the H2 error about 1.81×10−2. This indicates that the accuracy of the MT-based model, and the 
response of the reduced-order system, did not improve with increasing order, especially in the 
time domain and in the low-frequency range (<10 rad/s). Consequently, it can be concluded that 
for the purpose of reducing the order of IIR filters, BT is a superior method compared to MT, 
particularly in applications requiring high accuracy and the preservation of the original system’s 
dynamic characteristics. 

These results pave the way for further development in the application of model order 
reduction algorithms in signal processing, telecommunications, and complex control systems, 
helping to minimize processing time and computational costs while ensuring signal quality. In the 
future, additional research should focus on further optimizing these algorithms and applying them 
to various types of filters and systems, thereby broadening their scope of application and 
enhancing the overall performance of modern telecommunication systems. 
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