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ARTICLE INFO ABSTRACT 

Received:  10/3/2025 This study introduces a novel reinforcement learning-based control strategy for 

a grid-connected photovoltaic system integrated with a flywheel energy storage 

system. The proposed method replaces the conventional dual-loop current 

control of the Field-Oriented Control scheme for the induction motor  within 

the FESS with a single-agent controller based on the Deep Deterministic Policy 

Gradient algorithm. This intelligent controller leverages the strengths of 

Reinforcement Learning to handle the nonlinearities and parameter 

uncertainties inherent in the Flywheel Energy Storage System. Simulations in 

MATLAB/Simulink evaluate the performance of the proposed control system 

under various operating conditions. Results demonstrate that the Deep 

Deterministic Policy Gradient -based controller outperforms traditional 

Proportional-Integral  controllers in ensuring stable power output to the grid, 

even under significant fluctuations in photovoltaic generation. The proposed 

control method enhances system stability, optimizes energy storage dynamics, 

and maintains power quality, contributing to the broader adoption of intelligent 

energy storage solutions in renewable energy integration. 
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  10/3/2025 Nghiên cứu này giới thiệu một chiến lược điều khiển dựa trên học tăng 

cường mới cho hệ thống quang điện kết nối lưới tích hợp với hệ thống lưu 

trữ năng lượng bánh đà. Phương pháp được đề xuất thay thế điều khiển dòng 

điện vòng kép thông thường của sơ đồ Điều khiển định hướng trường cho 

động cơ cảm ứng trong FESS bằng một tác nhân học tăng cường dựa trên 

thuật toán Gradient chính sách xác định sâu. Bộ điều khiển thông minh này 

tận dụng điểm mạnh của học tăng cường để xử lý các tính phi tuyến tính và 

sự không chắc chắn của tham số vốn có trong hệ thống bánh đà lưu trữ năng 

lượng. Các mô phỏng trong MATLAB/Simulink đánh giá hiệu suất của hệ 

thống điều khiển được đề xuất trong các điều kiện hoạt động khác nhau. Kết 

quả chứng minh rằng bộ điều khiển dựa trên Gradient chính sách xác định 

sâu vượt trội hơn các bộ điều khiển Tích phân tỷ lệ truyền thống trong việc 

đảm bảo sản lượng điện ổn định cho lưới điện, ngay cả khi có những biến 

động đáng kể trong việc phát quang điện. Phương pháp điều khiển được đề 

xuất giúp tăng cường độ ổn định của hệ thống, tối ưu hóa động lực lưu trữ 

năng lượng và duy trì chất lượng điện, góp phần áp dụng rộng rãi hơn các 

giải pháp lưu trữ năng lượng thông minh trong tích hợp năng lượng tái tạo. 
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1. Introduction 

The growing global demand for clean and sustainable energy has fueled the development and 

integration of renewable energy systems, particularly photovoltaic (PV) and wind power technologies, 

into modern power grids. These energy sources, characterized by their intermittent and stochastic 

nature, often present challenges in maintaining grid stability and power quality. Distributed generation 

(DG) systems, which encompass these renewable sources, are inherently small-scale and variable, 

necessitating advanced energy management strategies to address issues such as power imbalance, 

voltage fluctuations, and frequency instability in microgrids (MGs) [1] – [2].  

Energy storage systems (ESS) have emerged as indispensable components of modern power 

systems, providing a buffer to balance supply and demand dynamically. Among the various ESS 

technologies, the flywheel energy storage system (FESS) stands out for its unique advantages, 

including high energy density, rapid response, long lifecycle, minimal maintenance requirements, 

and eco-friendly operation [3], [4]. Despite the higher initial investment cost, FESS offers low 

operational and maintenance expenses, making it a practical solution for stabilizing renewable 

energy-based systems. While previous research has largely focused on integrating FESS with 

wind power systems, its application in grid-connected solar power systems remains 

underexplored [4] – [6].  

Traditional control strategies for FESS, such as those employing permanent magnet 

synchronous machines (PMSMs) or induction machines (IMs), often rely on linear controllers, 

including proportional-integral-derivative (PID) controllers. While these methods are 

straightforward and easy to implement, they struggle to accommodate the nonlinear 

characteristics and parameter uncertainties inherent in FESS and its associated power electronic 

converters. Recent advancements in nonlinear control approaches, such as backstepping, sliding 

mode control, and fuzzy logic control, have addressed some of these limitations [7], [8]. 

However, these strategies typically require precise knowledge of system parameters, limiting 

their adaptability in dynamic environments.  

In parallel, artificial intelligence (AI)-based control techniques, including artificial neural 

networks (ANNs) and reinforcement learning (RL), have gained traction in addressing complex 

control problems. ANN-based controllers demonstrate the potential for adaptive control without 

detailed system modeling but face challenges in data collection and training, especially under 

variable operating conditions [9], [10]. RL control (RLC), on the other hand, offers a promising 

alternative by integrating optimal control principles with online learning capabilities. Over the 

past decade, advancements in computational power, algorithmic development, and data 

processing have significantly enhanced RLC’s applicability to nonlinear and uncertain systems 

[11], [12]. Notable studies, such as those by Kushwaha and Gopal [11], and Memon et al. [12], 

have demonstrated the efficacy of RL algorithms, including Q-Learning and Twin Delayed 

DDPG (TD3), for motor control applications. However, these methods often require extensive 

data and computational resources, which may limit their real-time applicability.  

Building upon this foundation, this study proposes a novel RL-based control strategy for a 

grid-connected photovoltaic system integrated with a flywheel energy storage system (PV-

FESS). Specifically, the two current control loops of the conventional Field-Oriented Control 

(FOC) scheme for the induction motor in FESS are replaced by a single RL agent utilizing the 

DDPG algorithm. This approach simplifies the control structure while ensuring fast and accurate 

responses to dynamic changes in system parameters. The key novelty of this research lies in the 

application of the DDPG algorithm to replace traditional linear controllers, providing a robust 

and adaptive solution for managing the nonlinear dynamics of the PV-FESS system.  

The proposed PV-FESS system, illustrated in Figure 1, integrates the FESS with the PV 

system at the DC bus through bidirectional power converters. The system's objective is to 

maintain a stable power output to the grid (Pgrid) by compensating for fluctuations in the PV 
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power output (Ppv) using the flywheel power (Pfly), ensuring that Pgrid = Ppv + Pfly  const. 

The operating principle of FESS involves energy storage and release through adjustments in the 

flywheel's angular velocity, governed by the equations of kinetic energy and power transfer 

dynamics. By leveraging the DDPG algorithm, the control strategy enables real-time adaptation 

to varying operating conditions, enhancing the system's overall stability and performance. 

The next part of this article: Part 2 provides details the design of the proposed control strategy 

for the PV-FESS system. Section 3 presents simulation results under various operating scenarios, 

comparing the proposed RL-based control with conventional PI controllers. Finally, Section 4 

concludes with insights into the findings and potential future research directions.  

 

Figure 1. Block diagram of the PV-FESS system 

connected to the grid 

 
Figure 2. Control system diagram with 

reinforcement learning technique 

2. Reinforcement learning control design for FESS 

2.1.  Reinforcement learning with DDPG Agent 

To address the complex, dynamic control demands of FESS in real-time microgrid 

environments, RL offers an innovative solution. RL algorithms enable intelligent agents to 

autonomously learn optimal control policies by interacting with their environment. Unlike 

supervised learning, where predefined datasets are used for training, RL relies on the agent’s 

experience gained through actions and feedback. An RL-based system’s key components include 

the Agent and the Environment, illustrated in Figure 2.  

The Agent itself consists of a policy (decision-making strategy) and an RL algorithm. A DNN 

is often employed to model the policy, enabling the Agent to identify and execute optimal actions 

for each observed state. Rewards, a critical element in RL, quantify the "goodness" of an action 

within a specific state. Unlike the cost function in traditional control methods like Linear 

Quadratic Regulator (LQR), RL rewards can take various forms, offering greater flexibility for 

complex, non-linear environments. 

In an RL-based control system: 

- The Agent executes actions that influence the Environment, receiving rewards and observing 

subsequent states. 

- The Environment represents the dynamic system model influenced by the Agent's decisions. 

- The Agent’s behavior is governed by a Policy, typically modeled by a deep neural network, 

which maps observed states to actions. 

- The Reward evaluates the Agent's performance, analogous to the cost function in optimal 

control theory, but tailored to maximize a desired outcome. 

The iterative process of training an RL-based system involves defining the problem, modeling 

the environment, designing a reward function, constructing and training the Agent, and deploying 

the optimized control policy. 
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The DDPG algorithm is particularly well-suited for continuous action spaces, making it ideal 

for controlling systems like FESS, where actions (e.g., speed adjustments) are not discrete. 

DDPG combines the strengths of reinforcement learning with deep learning, leveraging neural 

networks to optimize policies and evaluate actions.  

The DDPG algorithm employs an Actor-Critic 

architecture (illustrated in Figure 3) comprising 

two neural networks: 

Actor Network: Responsible for policy 

modeling, the Actor predicts optimal actions for 

given states. It is updated to maximize the 

expected reward.  

Critic Network: This evaluates the chosen 

actions by estimating their associated value 

functions, guiding the Actor’s policy updates. 

 
Figure 3. Actor-Critic learning algorithms 

In DDPG, the Actor network generates continuous-valued actions based on observed states, 

while the Critic network provides feedback by approximating the action-value function. 

The training process for the DDPG algorithm is iterative and involves: the environment provides 

the current state to the Agent; the Actor network determines the optimal action; the selected action 

influences the environment, producing a new state and reward; the Critic network evaluates the 

action, providing a learning signal to refine the Actor’s policy; both Actor and Critic networks are 

updated using gradients computed from the reward and predicted value functions.  

By combining these components, DDPG offers a robust framework for learning high-

dimensional, continuous control policies. This integration of advanced RL techniques with FESS 

highlights a novel approach to energy management in microgrids, addressing the challenges of 

dynamic environments and promoting sustainable energy solutions. 

2.2.  Conventional FOC for FESS  

Conventional FOC for the FESS is based on maintaining system stability during fluctuations 

in renewable energy generation, ensuring minimal variations in power fed to the grid. For this 

purpose, the control strategy aims to satisfy the following condition: 

                         (1) 

where       ,               represent the power supplied to the grid, the power generated by 

photovoltaic sources, and the power from the FESS, respectively. 

The mathematical model of IM in the rotating (d,q) coordinate system is described by [8]: 
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where,        
  

  
   ,     

  

    
, Rs, Rr are the stator phase resistance and the rotor 

phase resistance; Ls, Lr are is the stator phase inductance and the rotor phase inductance; M is the 

mutual inductance; uds, uqs are the orthogonal components of stator voltage; ids, iqs are the orthogonal 

components of stator current; dr, qr are the orthogonal components of rotor flux; p is the number 

of pole pairs; ωs is the rotational speed of the stator magnetic field: 

                           (3) 

The state equations (2) become: 
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The reference flux linkage is defined by the expression: 
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   is the reference flux linkage of the rotor,    is the reference flux linkage of the stator 
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With us being the effective value of the stator phase voltage, ωs being the angular velocity of 

the grid voltage with a value of 314.16 rad/s, we have:     √ 
  

 

  

  
                          (8) 

The reference stator current is determined by:      ef   PI(  ef   est)          (9) 

PI stands for Proportional-Integral control law. The estimated value of the rotor flux linkage is: 

     
 

  
  
  

 
          (10) 

where: s is the Laplace operator 

The reference power of the IM is determined by formula (1). From there, the reference speed 

of the flywheel is calculated:          √
       ef

    
                        (11) 

Where            E      ∫      , E0_fly is the initial kinetic energy of the flywheel. Using 

these equations, the reference flux linkage and stator current values are derived to optimize the 

control strategy. The proportional-integral (PI) controllers used in the outer loops regulate the 

speed and flux, while the inner loops control d- and q-axis currents. The block diagram for 

conventional FOC control of FESS is depicted in Figure 4, where the system relies on cascaded 

PI controllers for maintaining operational efficiency. 

 
Figure 4. Conventional FOC control block diagram for FESS 

While conventional FOC control methods are widely adopted, they exhibit limitations in 

handling nonlinearities and dynamic system changes, necessitating constant tuning of the PI 

controllers under varying conditions. This highlights the need for advanced control strategies, 

such as RL, to enhance performance and adaptability. 
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2.3. Reinforcement Learning Control for FESS 

Building on the foundation of conventional FOC, this study introduces a RL-based control 

design that replaces the inner-loop PI controllers with an intelligent agent. The RL agent, 

implemented using the DDPG algorithm, is especially compatible with nonlinear and dynamic 

systems like FESS, offering the ability to adapt without the need for manual controller tuning.  

Design Overview: The RL environment for the FESS control system includes all system 

components except the inner current control loops, which are replaced by the RL agent. The 

agent observes the system state variables, including isd, isq, and their errors  eid = isd_ref − isd and   

eiq = isq_ref − isq. The agent outputs control signals usd and usq, which are fed to the Space Vector 

Pulse Width Modulation (SVPWM) block. 

Reward Function Design: The reward function, critical for guiding the agent’s learning, is 

defined to encourage accurate tracking of reference currents and minimize control effort. It is 

expressed as:     (      
        

        
 )   (     

       
          

 )       (12) 

where: eid is the error of the d-axis current; eiq is the error of the q-axis current; ut-1 is the previous 

control signal, and   ,   ,    are weighting factors. For this study,    =    = 1, and    = 0.01. 

The RL agent employs the DDPG algorithm, which uses Actor-Critic neural networks to 

approximate the optimal policy. The Actor network determines the optimal action for a given 

state, while the Critic network evaluates the action by estimating its Q-value. The continuous 

action space of DDPG makes it ideal for controlling the analog signals  usd  and  usq . Training is 

performed in MATLAB-Simulink using the RL Toolbox. The training process involves 1900 

cycles, with termination when the agent achieves an average reward exceeding a predefined 

threshold. This process ensures the agent learns to effectively handle the nonlinearities and 

dynamics of the FESS system.  

The proposed RL-based control strategy demonstrates significant innovation by leveraging the 

adaptability and decision-making capabilities of RL. Unlike traditional PI controllers, which 

require frequent recalibration, the RL agent dynamically optimizes its control actions based on 

real-time interactions with the environment. Not only is this approach refine control 

interpretation but also reduces the need for manual intervention, making it highly scalable and 

robust for modern energy systems. By integrating the DDPG algorithm into the FESS control 

framework, this research highlights the potential of RL to revolutionize energy storage 

management, offering a novel solution for enhancing grid stability in renewable energy systems. 

3. Simulation and Discussion 

To evaluate the effectiveness of the proposed RL control strategy and its capacity to manage 

energy fluctuations in the PV-FESS system, simulations were conducted using Matlab-Simulink 

under a realistic scenario. The objective of these simulations was to demonstrate the ability of the 

FESS to compensate for irregularities in solar power generation, ensuring stable energy delivery 

to the grid. The simulation parameters and results highlight the novelty and robustness of the RL 

approach compared to conventional control techniques. 

3.1. Simulation Setup 

Under typical operating conditions, the PV-FESS system ensures that the total power injected 

into the grid remains stable, with Ppv-fess = PGrid. In this study, we simulated a scenario where solar 

power generation experiences abnormal fluctuations of ±50 kW. The FESS compensates for 

these variations by absorbing or releasing power to maintain grid stability. The power balance is 

described by: PFly = PGrid – Ppv = ∓50kW                       (13) 

Here, PFly serves as the reference signal for controlling the FESS operation. The simulation 

parameters as follows: P  = 7.5kW; Poles = 2; Rs = 0.6837Ω; Rr  0.451Ω; Ls = 0.04152H; Lr = 
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0.04152H; Lm = 0.1486H; J = 12.5kg.m
2
; Simulation time: 1sec; PI1 (Kp = 50, KI = 65); PI2 (Kp = 

55. KI = 102) 

In the simulation, the desired power output from the PV-FESS system was maintained at PGrid  

= 500kW, while the solar power generation Ppv(t) varied randomly over time. The power 

required from the FESS at the DC bus was calculated as: 

                                         Pfly(t) = Pgrid - Ppv(t) = PFly-ref.                                                          (14) 

To compare the performance of RL and conventional FOC, simultaneous simulations were 

performed for both control schemes under two conditions: (1) Nominal machine; (2) Modified 

machine parameters, where stator and rotor resistances were doubled (Rs   1.3674Ω and Rr   

0.902Ω) when it comes to the temperature rise of the electrical machine during operation. 

3.2. Simulation results 

Figure 5 and Figure 6 illustrate the power and flux responses of the FESS under nominal 

conditions. Both the RL-based control and conventional FOC schemes demonstrated effective 

tracking of the reference power, ensuring stable grid operation. The minor differences between 

the two methods under nominal conditions suggest that conventional FOC can meet basic control 

requirements. 

 
Figure 5. The power response of FESS when use 

RL and FOC 

 
 

Figure 6. The fux response of FESS when use RL 

and FOC 

 
Figure 7. The power response of the FESS when 

using RL and FOC as the parameters of the electric 

machine varies 

 
Figure 8. The flux response of the FESS when using 

RL and FOC as the parameters of the electric 

machine varies 

However, when the machine parameters were modified, as shown in Figure 7 and Figure 8, 

the RL-based control scheme exhibited superior adaptability. The power response and phase 

response of the RL system closely followed the reference values, while the conventional FOC 

scheme showed significant deviations. This result highlights the ability of RL to handle 

parameter variations and dynamic operating conditions without requiring manual retuning, unlike 

the fixed-gain PI controllers in conventional FOC. 

Finally, Figure 9 demonstrates the power response of the PV-FESS system when subjected to 

random fluctuations in solar power generation. The RL-based FESS maintained a nearly constant 

total power delivery to the grid, effectively compensating for irregularities in solar power. This 

confirms the capability of the RL approach to achieve robust and adaptive control, ensuring grid 

stability under varying conditions. 
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Figure 9. Power response of the PV-FESS with RL technique 

3.3. Discussion 

The simulation results underscore the novelty and creativity of integrating RL into FESS 

control. Unlike conventional FOC, which relies on fixed-gain PI controllers, the RL agent 

dynamically adjusts its control strategy based on real-time feedback from the system. This 

adaptability is particularly advantageous in nonlinear and time-varying systems, such as the PV-

FESS system, where parameter uncertainties and external disturbances are common. Moreover, the 

RL-based control reduces the need for manual tuning and improves system performance across a 

wide range of operating conditions. These features make RL a promising alternative to traditional 

control methods for advanced energy storage and grid stabilization applications. The findings of 

this study contribute to the growing body of research on intelligent control systems, paving the way 

for more efficient and resilient renewable energy systems. 

4. Conclusion 

This study proposes a RL-based control algorithm using the DDPG agent to regulate a PV and 

FESS integrated with the grid, ensuring stable power delivery despite solar generation fluctuations 

and parameter variations. Simulation results confirm the RL-based controller’s ability to maintain 

consistent grid power under dynamic conditions, outperforming the conventional proportional-

integral (PI) control, particularly when system parameters deviate. The research highlights the 

novel application of RL for adaptive management of renewable energy systems, contributing to the 

development of robust, efficient, and intelligent grid-integrated solutions. While promising, the 

study represents an initial step validated through simulations. Future work should focus on 

comparative evaluations with other RL algorithms, real-world experimentation, sensorless control 

strategies, and optimization of the DC-AC interface for enhanced practicality and performance. 

These directions offer significant potential to advance RL-based control for renewable energy 

integration, fostering resilient and sustainable energy systems. 
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