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This study introduces a novel reinforcement learning-based control strategy for
a grid-connected photovoltaic system integrated with a flywheel energy storage
system. The proposed method replaces the conventional dual-loop current
control of the Field-Oriented Control scheme for the induction motor within
the FESS with a single-agent controller based on the Deep Deterministic Policy
Gradient algorithm. This intelligent controller leverages the strengths of
Reinforcement Learning to handle the nonlinearities and parameter
uncertainties inherent in the Flywheel Energy Storage System. Simulations in
MATLAB/Simulink evaluate the performance of the proposed control system
under various operating conditions. Results demonstrate that the Deep
Deterministic Policy Gradient -based controller outperforms traditional
Proportional-Integral controllers in ensuring stable power output to the grid,
even under significant fluctuations in photovoltaic generation. The proposed
control method enhances system stability, optimizes energy storage dynamics,
and maintains power quality, contributing to the broader adoption of intelligent
energy storage solutions in renewable energy integration.

THIET KE PIEU KHIEN HQC TANG CUONG
CHO HE THONG PV-FESS TRONG VI LUOI

Lai Thi Thanh Hoa'", Nguy&n Thi Mai Hwong®, D§ Trung Hai', Lai Khiic Lai', Nguyén Diic Toan’
YTrieong Pai hoc Ky thudt Cong nghiép - PH Thai Nguyén
sz’o‘ng Co khi - Dai hoc Bach khoa Ha Noi

THONG TIN BAI BAO

TOM TAT

Ngay nhén bai: 10/3/2025
Ngay hoan thién: 09/5/2025
Ngay dang: 09/5/2025

TU KHOA

Gradient chinh sach x4c dinh siu
Hé¢ théng luu trir ning lugng
banh da

May dién cam ting

Vi luéi

Hoc tdng cuong

Nghién ciru nay gisi thiéu mot chién luge diéu khién dya trén hoc ting
cudng méi cho hé théng quang dién két ndi ludi tich hop véi hé théng luu
trir ning luong banh da. Phuong phap duoc dé xuét thay thé diéu khién dong
dién vong kép théng thuong cua so d6 Pidu khién dinh huéng trudng cho
dong co cam ung trong FESS bang mot tic nhan hoc ting cudng dua trén
thuat toan Gradient chinh sach xac dinh sau. B6 diéu khién thong minh nay
tan dung diém manh cua hoc ting cudong dé xir 1y cac tinh phi tuyén tinh va
su khong chic chan cua tham sé von ¢6 trong hé thdng banh da luu trit ning
lugng. Cac md phong trong MATLAB/Simulink danh gia hiéu suét cua hé
thdng diéu khién dugc dé xuit trong cac diéu kién hoat dong khac nhau. Két
qua chiing minh rang bo diéu khién duya trén Gradient chinh sach xac dinh
sau vuot troi hon cac bo diéu khién Tich phan ty Ié truyén thdng trong viéc
dam bao san lugng dién én dinh cho ludi dién, ngay ca khi cé nhiing bién
dong dang ké trong viéc phat quang dién. Phuong phap diéu khién dugc dé
XUAt giup tang cuong do én dinh cua hé théng, t6i uu hoa dong luc luu tri
ning lugng va duy tri chat luong dién, gop phan ap dung rong rdi hon cac
giai phap luu trir nang luong thong minh trong tich hop nang lugng tai tao.
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1. Introduction

The growing global demand for clean and sustainable energy has fueled the development and
integration of renewable energy systems, particularly photovoltaic (PV) and wind power technologies,
into modern power grids. These energy sources, characterized by their intermittent and stochastic
nature, often present challenges in maintaining grid stability and power quality. Distributed generation
(DG) systems, which encompass these renewable sources, are inherently small-scale and variable,
necessitating advanced energy management strategies to address issues such as power imbalance,
voltage fluctuations, and frequency instability in microgrids (MGs) [1] —[2].

Energy storage systems (ESS) have emerged as indispensable components of modern power
systems, providing a buffer to balance supply and demand dynamically. Among the various ESS
technologies, the flywheel energy storage system (FESS) stands out for its unique advantages,
including high energy density, rapid response, long lifecycle, minimal maintenance requirements,
and eco-friendly operation [3], [4]. Despite the higher initial investment cost, FESS offers low
operational and maintenance expenses, making it a practical solution for stabilizing renewable
energy-based systems. While previous research has largely focused on integrating FESS with
wind power systems, its application in grid-connected solar power systems remains
underexplored [4] — [6].

Traditional control strategies for FESS, such as those employing permanent magnet
synchronous machines (PMSMs) or induction machines (IMs), often rely on linear controllers,
including proportional-integral-derivative (PID) controllers. While these methods are
straightforward and easy to implement, they struggle to accommodate the nonlinear
characteristics and parameter uncertainties inherent in FESS and its associated power electronic
converters. Recent advancements in nonlinear control approaches, such as backstepping, sliding
mode control, and fuzzy logic control, have addressed some of these limitations [7], [8].
However, these strategies typically require precise knowledge of system parameters, limiting
their adaptability in dynamic environments.

In parallel, artificial intelligence (Al)-based control techniques, including artificial neural
networks (ANNS) and reinforcement learning (RL), have gained traction in addressing complex
control problems. ANN-based controllers demonstrate the potential for adaptive control without
detailed system modeling but face challenges in data collection and training, especially under
variable operating conditions [9], [10]. RL control (RLC), on the other hand, offers a promising
alternative by integrating optimal control principles with online learning capabilities. Over the
past decade, advancements in computational power, algorithmic development, and data
processing have significantly enhanced RLC’s applicability to nonlinear and uncertain systems
[11], [12]. Notable studies, such as those by Kushwaha and Gopal [11], and Memon et al. [12],
have demonstrated the efficacy of RL algorithms, including Q-Learning and Twin Delayed
DDPG (TD3), for motor control applications. However, these methods often require extensive
data and computational resources, which may limit their real-time applicability.

Building upon this foundation, this study proposes a novel RL-based control strategy for a
grid-connected photovoltaic system integrated with a flywheel energy storage system (PV-
FESS). Specifically, the two current control loops of the conventional Field-Oriented Control
(FOC) scheme for the induction motor in FESS are replaced by a single RL agent utilizing the
DDPG algorithm. This approach simplifies the control structure while ensuring fast and accurate
responses to dynamic changes in system parameters. The key novelty of this research lies in the
application of the DDPG algorithm to replace traditional linear controllers, providing a robust
and adaptive solution for managing the nonlinear dynamics of the PV-FESS system.

The proposed PV-FESS system, illustrated in Figure 1, integrates the FESS with the PV
system at the DC bus through bidirectional power converters. The system's objective is to
maintain a stable power output to the grid (Pgrid) by compensating for fluctuations in the PV
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power output (Ppv) using the flywheel power (Pfly), ensuring that Pgrid = Ppv + Pfly ~ const.
The operating principle of FESS involves energy storage and release through adjustments in the
flywheel's angular velocity, governed by the equations of kinetic energy and power transfer
dynamics. By leveraging the DDPG algorithm, the control strategy enables real-time adaptation
to varying operating conditions, enhancing the system's overall stability and performance.

The next part of this article: Part 2 provides details the design of the proposed control strategy
for the PV-FESS system. Section 3 presents simulation results under various operating scenarios,
comparing the proposed RL-based control with conventional Pl controllers. Finally, Section 4
concludes with insights into the findings and potential future research directions.
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2. Reinforcement learning control design for FESS
2.1. Reinforcement learning with DDPG Agent

To address the complex, dynamic control demands of FESS in real-time microgrid
environments, RL offers an innovative solution. RL algorithms enable intelligent agents to
autonomously learn optimal control policies by interacting with their environment. Unlike
supervised learning, where predefined datasets are used for training, RL relies on the agent’s
experience gained through actions and feedback. An RL-based system’s key components include
the Agent and the Environment, illustrated in Figure 2.

The Agent itself consists of a policy (decision-making strategy) and an RL algorithm. A DNN
is often employed to model the policy, enabling the Agent to identify and execute optimal actions
for each observed state. Rewards, a critical element in RL, quantify the "goodness" of an action
within a specific state. Unlike the cost function in traditional control methods like Linear
Quadratic Regulator (LQR), RL rewards can take various forms, offering greater flexibility for
complex, non-linear environments.

In an RL-based control system:

- The Agent executes actions that influence the Environment, receiving rewards and observing

subsequent states.

- The Environment represents the dynamic system model influenced by the Agent's decisions.

- The Agent’s behavior is governed by a Policy, typically modeled by a deep neural network,

which maps observed states to actions.

- The Reward evaluates the Agent's performance, analogous to the cost function in optimal

control theory, but tailored to maximize a desired outcome.

The iterative process of training an RL-based system involves defining the problem, modeling
the environment, designing a reward function, constructing and training the Agent, and deploying
the optimized control policy.
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The DDPG algorithm is particularly well-suited for continuous action spaces, making it ideal
for controlling systems like FESS, where actions (e.g., speed adjustments) are not discrete.
DDPG combines the strengths of reinforcement learning with deep learning, leveraging neural
networks to optimize policies and evaluate actions.

The DDPG algorithm employs an Actor-Critic
architecture (illustrated in Figure 3) comprising
two neural networks:

Actor Network: Responsible for policy
modeling, the Actor predicts optimal actions for
given states. It is updated to maximize the  State

observations
expected reward.

Critic Network: This evaluates the chosen
actions by estimating their associated value
functions, guiding the Actor’s policy updates.

In DDPG, the Actor network generates continuous-valued actions based on observed states,
while the Critic network provides feedback by approximating the action-value function.

The training process for the DDPG algorithm is iterative and involves: the environment provides
the current state to the Agent; the Actor network determines the optimal action; the selected action
influences the environment, producing a new state and reward; the Critic network evaluates the
action, providing a learning signal to refine the Actor’s policy; both Actor and Critic networks are
updated using gradients computed from the reward and predicted value functions.

By combining these components, DDPG offers a robust framework for learning high-
dimensional, continuous control policies. This integration of advanced RL techniques with FESS
highlights a novel approach to energy management in microgrids, addressing the challenges of
dynamic environments and promoting sustainable energy solutions.

2.2. Conventional FOC for FESS

Conventional FOC for the FESS is based on maintaining system stability during fluctuations
in renewable energy generation, ensuring minimal variations in power fed to the grid. For this
purpose, the control strategy aims to satisfy the following condition:

Pgrid = Ppv T Priy = const (1)
where pgriq » Dpy and pgy, represent the power supplied to the grid, the power generated by
photovoltaic sources, and the power from the FESS, respectively.

The mathematlcal model of IM in the rotating (d,q) coordinate system is described by [8]:

Figure 3. Actor-Critic learning algorithms
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where, Rg, = Ry + Rr, c=1 —ﬁ, Rs, R; are the stator phase resistance and the rotor

ST

phase resistance; L, L; are is the stator phase inductance and the rotor phase inductance; M is the
mutual inductance; ugs, Ugs are the orthogonal components of stator voltage; igs, iqs are the orthogonal
components of stator current; g, ¢q are the orthogonal components of rotor flux; p is the number
of pole pairs; ws is the rotational speed of the stator magnetic field:
Pra =@; Prqg =0 3)
The state equations (2) become:
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The reference flux linkage is defined by the expression:
Prn khi |op| < wpy )
Prer = (pml khi |a)f| > Wey
Prn = ﬁ@sn (6)
@1 the reference flux linkage of the rotor, ¢,,is the reference flux linkage of the stator
Us
Psn = 3w_s (7)
With us being the effective value of the stator phase voltage, s being the angular velocity of
the grid voltage with a value of 314.16 rad/s, we have: ¢, = V3 L—Tf (8)
The reference stator current is determined by: ij5_ref = PI(@rer — Pest) _ _ (9)
Pl stands for Proportional-Integral control law. The estimated value of the rotor flux linkage is:
M .
Pest = _L_rslsd (10)

14t

where: s is the Laplace operator
The reference power of the IM is determined by formula (1). From there, the reference speed

of the flywheel is calculated: wpry oy = /”jl—yf (12)
fly
Where Efpy rer = Eq f1y + fpﬂydt, Eq sy Is the initial kinetic energy of the flywheel. Using

these equations, the reference flux linkage and stator current values are derived to optimize the
control strategy. The proportional-integral (P1) controllers used in the outer loops regulate the
speed and flux, while the inner loops control d- and g-axis currents. The block diagram for
conventional FOC control of FESS is depicted in Figure 4, where the system relies on cascaded
Pl controllers for maintaining operational efficiency.
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Figure 4. Conventional FOC control block diagram for FESS
While conventional FOC control methods are widely adopted, they exhibit limitations in
handling nonlinearities and dynamic system changes, necessitating constant tuning of the PI
controllers under varying conditions. This highlights the need for advanced control strategies,
such as RL, to enhance performance and adaptability.
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2.3. Reinforcement Learning Control for FESS

Building on the foundation of conventional FOC, this study introduces a RL-based control
design that replaces the inner-loop PI controllers with an intelligent agent. The RL agent,
implemented using the DDPG algorithm, is especially compatible with nonlinear and dynamic
systems like FESS, offering the ability to adapt without the need for manual controller tuning.

Design Overview: The RL environment for the FESS control system includes all system
components except the inner current control loops, which are replaced by the RL agent. The
agent observes the system state variables, including ig, isq, and their errors eig = isq ref — isg and
€iq = lsq_ref — 1sq. The agent outputs control signals us and ug,, Which are fed to the Space Vector
Pulse Width Modulation (SVPWM) block.

Reward Function Design: The reward function, critical for guiding the agent’s learning, is
defined to encourage accurate tracking of reference currents and minimize control effort. It is
expressed as: 1, = —(A; * efy + A x efy + Azuf_1) = —(1xefy + 1 xef, +0,01uf_;) (12)

where: ejq is the error of the d-axis current; ejq is the error of the g-axis current; uy. is the previous
control signal, and A4, 4,, A3 are weighting factors. For this study, 1; =4, =1, and A3 = 0.01.

The RL agent employs the DDPG algorithm, which uses Actor-Critic neural networks to
approximate the optimal policy. The Actor network determines the optimal action for a given
state, while the Critic network evaluates the action by estimating its Q-value. The continuous
action space of DDPG makes it ideal for controlling the analog signals usd and usq . Training is
performed in MATLAB-Simulink using the RL Toolbox. The training process involves 1900
cycles, with termination when the agent achieves an average reward exceeding a predefined
threshold. This process ensures the agent learns to effectively handle the nonlinearities and
dynamics of the FESS system.

The proposed RL-based control strategy demonstrates significant innovation by leveraging the
adaptability and decision-making capabilities of RL. Unlike traditional Pl controllers, which
require frequent recalibration, the RL agent dynamically optimizes its control actions based on
real-time interactions with the environment. Not only is this approach refine control
interpretation but also reduces the need for manual intervention, making it highly scalable and
robust for modern energy systems. By integrating the DDPG algorithm into the FESS control
framework, this research highlights the potential of RL to revolutionize energy storage
management, offering a novel solution for enhancing grid stability in renewable energy systems.

3. Simulation and Discussion

To evaluate the effectiveness of the proposed RL control strategy and its capacity to manage
energy fluctuations in the PV-FESS system, simulations were conducted using Matlab-Simulink
under a realistic scenario. The objective of these simulations was to demonstrate the ability of the
FESS to compensate for irregularities in solar power generation, ensuring stable energy delivery
to the grid. The simulation parameters and results highlight the novelty and robustness of the RL
approach compared to conventional control techniques.

3.1. Simulation Setup

Under typical operating conditions, the PV-FESS system ensures that the total power injected
into the grid remains stable, with Ppy.tess = Parig. In this study, we simulated a scenario where solar
power generation experiences abnormal fluctuations of +50 kW. The FESS compensates for
these variations by absorbing or releasing power to maintain grid stability. The power balance is
described by: Py = Pgrig — Ppy = +50kW (13)

Here, Pgy serves as the reference signal for controlling the FESS operation. The simulation
parameters as follows: P = 7.5kW; Poles = 2; Ry = 0.6837Q; R, =0.451Q; L = 0.04152H; L, =
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0.04152H; L,,, = 0.1486H; J = 12.5kg.m?; Simulation time: 1sec; Pl; (K, = 50, K, = 65); Pl, (K, =
55. K, =102)

In the simulation, the desired power output from the PV-FESS system was maintained at Pgig
= 500kW, while the solar power generation Ppv(t) varied randomly over time. The power
required from the FESS at the DC bus was calculated as:

Pﬂy(t) = I:)grid - va(t) = IDFIy—ref‘ (14)

To compare the performance of RL and conventional FOC, simultaneous simulations were
performed for both control schemes under two conditions: (1) Nominal machine; (2) Modified
machine parameters, where stator and rotor resistances were doubled (Rs = 1.3674Q and Rr =
0.902Q) when it comes to the temperature rise of the electrical machine during operation.

3.2. Simulation results

Figure 5 and Figure 6 illustrate the power and flux responses of the FESS under nominal
conditions. Both the RL-based control and conventional FOC schemes demonstrated effective
tracking of the reference power, ensuring stable grid operation. The minor differences between
the two methods under nominal conditions suggest that conventional FOC can meet basic control
requirements.
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Figure 7. The power response of the FESS when Figure 8. The flux response of the FESS when using
using RL and FOC as the parameters of the electric RL and FOC as the parameters of the electric
machine varies machine varies

However, when the machine parameters were modified, as shown in Figure 7 and Figure 8,
the RL-based control scheme exhibited superior adaptability. The power response and phase
response of the RL system closely followed the reference values, while the conventional FOC
scheme showed significant deviations. This result highlights the ability of RL to handle
parameter variations and dynamic operating conditions without requiring manual retuning, unlike
the fixed-gain PI controllers in conventional FOC.

Finally, Figure 9 demonstrates the power response of the PV-FESS system when subjected to
random fluctuations in solar power generation. The RL-based FESS maintained a nearly constant
total power delivery to the grid, effectively compensating for irregularities in solar power. This
confirms the capability of the RL approach to achieve robust and adaptive control, ensuring grid
stability under varying conditions.
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Figure 9. Power response of the PV-FESS with RL technique
3.3. Discussion

The simulation results underscore the novelty and creativity of integrating RL into FESS
control. Unlike conventional FOC, which relies on fixed-gain Pl controllers, the RL agent
dynamically adjusts its control strategy based on real-time feedback from the system. This
adaptability is particularly advantageous in nonlinear and time-varying systems, such as the PV-
FESS system, where parameter uncertainties and external disturbances are common. Moreover, the
RL-based control reduces the need for manual tuning and improves system performance across a
wide range of operating conditions. These features make RL a promising alternative to traditional
control methods for advanced energy storage and grid stabilization applications. The findings of
this study contribute to the growing body of research on intelligent control systems, paving the way
for more efficient and resilient renewable energy systems.

4. Conclusion

This study proposes a RL-based control algorithm using the DDPG agent to regulate a PV and
FESS integrated with the grid, ensuring stable power delivery despite solar generation fluctuations
and parameter variations. Simulation results confirm the RL-based controller’s ability to maintain
consistent grid power under dynamic conditions, outperforming the conventional proportional-
integral (PI) control, particularly when system parameters deviate. The research highlights the
novel application of RL for adaptive management of renewable energy systems, contributing to the
development of robust, efficient, and intelligent grid-integrated solutions. While promising, the
study represents an initial step validated through simulations. Future work should focus on
comparative evaluations with other RL algorithms, real-world experimentation, sensorless control
strategies, and optimization of the DC-AC interface for enhanced practicality and performance.
These directions offer significant potential to advance RL-based control for renewable energy
integration, fostering resilient and sustainable energy systems.
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