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This paper focuses on training the coefficients of the discrete cellular
neural networks using Bayesian learning. In this method, the prior
distribution, which is assumed to be a Gauss distribution, is determined
based on prior information and the posterior distribution is then
calculated using Bayes' theorem. A Markov Chain Monte Carlo method,
specifically the Metropolis-Hastings algorithm, is used for generating
random samples corresponding to the posterior distribution, thereby
helping to estimate the coefficients of the network. We have modified
the Metropolis-Hastings algorithm to reduce the coefficient estimation
time. Some image processing experiments are implemented with
estimated coefficients. In more details, we target the size of the network
to be trained. Using the training data obtained from the distillation
technique, we found that training a smaller network size using the
method described above for image processing also gives equivalent
results as compared to a larger network size. This can reduce the
training time, resulting in smaller training costs and thus increasing the
training efficiency of the discrete cellular neural networks.
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Hoc Bayes
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Kich thuéc mang

Bai bao nay tap trung vao viéc dao tao cac hé so cuia mang no-ron té bao
1di rac bing cach sitr dung hoc Bayes. Trong phwong phap nay, phin
phéi tién nghiém dwoc xac dinh theo théng tin ¢ tir trude. Sau khi quan
sat dugce thyc hién va st dung phan phéi tién nghiém, phan phéi hau
nghiém s& duoc tinh theo dinh 1y Bayes v6i gia thiét rang phan phdi tién
nghiém tudn theo phan phéi chuin Gauss. Phwong phap chudi Markov
Chain Monte Carlo, cu thé 13 phwong phap Metropolis-Hastings, dwoc
stt dung dé tao ra cic miu ngdu nhién twong ng v6i phan phdi hau
nghiém, nhd d6 gitp danh gia duge hé sé miu ciia mang no-ron té bao
1oi rac. Thudt toan Metropolis-Hastings dwoc chung t6i chinh stra dé
giam thoi gian cta qué trinh uée tinh hé sé. St dung céc hé sé thu dwoc
tir w6e tinh nay, mot sé thi nghiém xt 1y hinh anh duoc trién khai. Chi
tiét hon, ching t61 nhim t6i kich thuée cua mang cAn huén luyén. Su
dung dir lidu dao tao thu duoc tir k§ thuat chung cit, ching t6i thiy ring
viéc hudn luyén mdt mang no-ron té bao roi rac co kich thuéc nho hon
bang phuong phap vira néu trong xir 1y anh ciing dem lai két qua twong
duong vai viée hudn luyén mot mang c6 kich thude 16n hon. Nho do ta
c6 thé giam thoi gian hudn luyén, dan t6i giam chi phi huin luyén va
tang hiéu qua huin luyén clia mang no-ron té bao roi rac.
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1. Introduction

Cellular neural networks (CeNN) [1], [2] have become a promising area of research, notably
in image processing [3] — [5]. A CeNN is designed with a set of coefficients (synaptic weights).
These coefficients need to be estimated (called training) [6]. Many methods have been proposed
to estimate these coefficients such as multilayer perceptron method (MLP) [7] or recurrent
perception learning algorithm (RPLA) [8] or heuristic algorithms [9], [10]. Each method has its
own advantages and disadvantages. Choosing an appropriate method to train a CeNN and
suitable for the type of data being processed is very important. The training method can also
affect the training performance.

In [11], a CeNN is trained by Bayesian learning. This method determines the prior distribution
based on prior information and the posterior distribution is then calculated using Bayes' theorem.
A Markov Chain Monte Carlo (MCMC) method, specifically the Metropolis-Hastings algorithm
[12], [13], is used for generating random samples corresponding to the posterior distribution,
thereby helping to estimate the coefficients of the network. Unlike other sampling methods, the
Metropolis—Hastings algorithm allows for the easy and fast generation of a large number of
random samples from an arbitrary known probability distribution.

In this work, we target the size of a CeNN that needs to be trained. We train a CeNN
following the method mentioned above using grayscale image as input data and binary image as
output data. We find that training a CeNN with a small size also gives results almost equivalent
to training a CeNN network with a large data. Furthermore, the training time of a small CeNN is
also lower than that of a large CeNN, thus reducing the training cost and increasing the training
efficiency of CeNN.

The structure of the paper is as follows. An overview of the discrete-time CeNN is briefly
presented in Section 2.1. The Bayesian learning method for estimating the discrete-time CeNN
coefficients is described in Section 2.2. The Metropolis-Hastings algorithm for model generation
is presented in Section 2.3. Testing cases of image processing are shown in Section 2.4. And
comments on the obtained results with future research are discussed in the conclusion.

2. Methodology
2.1. Architectures of the Discrete Time Cellular Neural Networks (DT-CeNN)

A DT-CeNN cell differs from a standard CeNN cell (in that it requires solving ordinary
differential equations) in the following aspects [1], [2]:

xij(n+ 1) = Yewpes, @) AW Jj; k, D vig() + Yewpes, oj BA j; k Dugg + 2z (1)
and output activation function f (xi j (n)):

v;(m) =f (xij(n)) = % |xi;(n) + 1| - % |xi;(n) — 1] (2
where u, v, and x represent input, output, and state, respectively.

State x needs to be initialized before processing input data. 4 and B in the equation (1) are the
cloning template and control template, respectively. Each cell of a template represents the
synaptic weights between a cell and its neighbors. Bias z is the cell bias and is constant for every
cell. Sr denotes the neighborhood of cell C with radius » and » determines how many neighbor
cells are interconnected with each other. The output equation states that output v is a function of
state x, leading to recursive property of system.

The size of input data is the size of DT-CeNN. A stable DT-CeNN has the binary output
property since the network output converges to {+1, —1}. A DT-CeNN becomes stable if the
weights of templates 4 and B are symmetric. In order to be a symmetric and stable CeNN, the
center parameter of A (self feedback parameter) must be greater than 1 [14].
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2.2. Estimation of the DT-CeNN coefficients using Bayesian learning

Bayesian learning [15] determines the prior distribution based on prior information and the
posterior distribution is then calculated using Bayes' theorem. This method helps us to estimate
the unknown coefficients of the DT-CeNN network. In order to do this, we model firstly a DT-
CeNN network as described in [11].

A cell in the DT-CeNN can be modelled as follows:

y[n] = cx[)n](uyg)"' w/n] ,n=20,1,.. N-1 (3)

where u is input data and y is output. The notation fo[,"] (u, 8) represents the state of the DT-
CeNN that is stable with the n™ input sample. w/n] represents Additive Gaussian noise adding to
the n™ output y/n]. We suppose that this noise has a distribution of N (0, 6:2).

Equation (3) is rewritten in vector form as:

y=fo(u, 0) + o “
As emphasized above, a DT-CeNN is stable if the templates 4 and B are symmetric. Each
block 4 and B has size of 3x3 with 5 coefficients that we need to find:

6, 0, 03 0 6; 0
A=10, 05 6,|,B=[0y 04 99].2 =01 Q)
0; 6, 6, 0 6; 0

where z is the constant bias for every cell of DT-CeNN. So we need to find coefficients as a
vector 6 [1 R'"" defined as follows:

0=1[6; 0 05 64 05 05 07 05 09 019 O11] " (6)
Applied Bayes theorem, posterior distribution is defined as:
p@ly) [ p(y|0)p(6) (N

where p(0) is prior distribution and likelihood p(y|6) is a Gaussian distribution with mean
fo(u, 6) and variance o,°. Knowing that N input samples are known in advance, p(y|6) is then
rewritten as below:

2
(y[n]—fLI}] (u.e))
1 - 2

po10) = T3 = ®)

Prior distribution of 6 is supposed ~ N(ug, 2y), where o is the mean vector and Xy is the
covariance matrix. Therefore, prior probability density function (PDF) is computed as follows:

_(0-19)" 55" (6-1g)

p(6) = \/ﬁe 2 )

Using Equations (7), (8) and (9) we have posterior PDF as:

2
[n]
yInl-f (u.e)) T —
1 _<+ 1 _(6-19) =5 (6-1g)

=TIN-1 o - -
p(9|y) Dp(y|9)]9(9) Hn=0 \/ﬁe 2 Xme 2 (10)

We cannot use derivatives to solve equation (10). This is where Markov Chain Monte Carlo
(MCMC) method is used.
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2.3. Metropolis algorithm

The Metropolis algorithm [12], [13], which is a MCMC method, is used for generating data
samples. Before creating a sample, we must initialize an initial point to start from. This point can
be predicted based on prior information. To find the vector &, we initialize a vector as follows:

0(0) = [6:(0), 6:(0), ..., 01:(0)]" (11)
with 6(0) being the initial vector corresponding to the chosen initial starting point.

A sample sequence of vector § will be obtained in the following way. From the initial point, a
new vector 6., is generated according to a Gaussian distribution function [12]. Vector Gy, can
be considered as new sample. The new sample can be accepted and inserted into the sample
sequence with a rate a given in [12], [13]. The rate a is defined as follows:

p(enew |y )
= 12
p(6Gi-1) 1) (12)
where p(G,.w|y) is the posterior distribution of vector 6., while p(8(i — 1)|y) is the posterior
distribution of vector 6(i-1), which is the previous vector sample in the sequence. These posterior
distributions are computed using equation (10). Note that the vector € has 11 components, so to
determine the squared error in equation (10), we have to calculate the sum of the squared errors
of all the components of the vector.
The sample sequence will finally be created from K samples [16], [17]:

0G)y=[0:()y, 0:()|y, ..., O11(i)|y]” where i=0, I, ..., K-1 (13)

The estimated value of the vector 8 (so-called 6°) will be approximately equal to the average

of K samples in the sample sequence (due to the hypothesis that the vector 8 follows a normal
distribution):

0" = E[0]y] ~2 S50 | y) (14

Note that equation (14) is applied for each component of 6(i)|y. The obtained vector 8’ are
then used in equation (5) to construct the templates 4, B and the bias z.

3. Image processing results

In our experiments, we target the size of the DT-CeNN to be trained. Instead of searching for
coefficients (the cloning template, the control template and the bias) of a DT-CeNN of size of
n*n corresponding to the input data size, we try to find coefficients for a DT-CeNN of size of k*k
where k < n. After obtaining coefficients of k*k DT-CeNN, we apply these coefficients to the n*n
DT-CeNN and then we use this n*n-sized network to process the input data of size of n*n.

As stated above, the center parameter of block 4 must be greater than 1. Therefore, the
Metropolis algorithm is modified in the random generation step with the following rule: if a
newly generated random value causes the self-feedback parameter to be less than 1, it must be
regenerated. In equation (11), the vector § has 11 components, so the aforementioned rule applies
to the 5™ component corresponding to the central parameter of the cloning template. With this
rule, we find that the training process is faster (as demonstrated in Figure 1) while still ensuring
equivalent output results. In Figure 1, we run two algorithms: the original Metropolis algorithm
(referred to as Norm-Metro) and the modified Metropolis algorithm (Modified-Metro) for the
image edge detection with a 16x16 DT-CeNN using the training input image number of 32. We
observe that after 15,000 generated samples, the original Metropolis algorithm runs slower as
compared to the modified Metropolis algorithm, while the results from both algorithms are
equivalent (as detailed later in Figure 7). Based on this experiment, we decided to use the
modified Metropolis algorithm in all other experiments presented in this paper.

During the training phase, we plan to train the DT-CeNN for two image processing cases:
edge detection and rectangular object filling. We use equations (1), (2) and (4) to calculate f..(1,6)
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for each generated sample. The maximum iterations for calculation of f.(,6) is limited to 100.
The initial value of state x in equation (1) is chosen as either 1 or 0, depending on the image
processing case.

4500 =TT
Norm-Metr
| ——- Modified-Metro| /- |

3500 Z4
w
3 2500 |- .|
“

1500

500 - L L 1

3000 7000 11000 15000
Sample Number

Figure 1. Training time of a 16x16 DT-CeNN.: original Metropolis vs modified Metropolis

The initial values of vector 8 in equation (11) are set to 1. During the execution of the Modified-
Metro algorithm, the uniform distribution is always U(0,1). The prior distribution p(8) is a
Gaussian distribution of N(7,2) while the likelihood p(y|6) follows a Gaussian distribution of
N(0,4). All experiments are executed on a laptop with an Intel Core i7 CPU and 8GB RAM.

3.1. Rectangle filling with different sizes of DT-CeNN

We use a set of input images and a set of output images to train a DT-CeNN to fill the
rectangle object. We randomly generate 2 sets for training: 128 rectangles containing only an
outline with a border width of 2 pixels and 128 solid black-filled rectangles. Each input/output
image pair corresponds to a rectangle of the same size. For different input/output pairs, the
rectangle size is different. These rectangles have random sizes and are stored in images of a given
size. Since we have 128 input/output image pairs for training, so parameter N in equation (10) is
equal to 128. This study aims to examine how the training time of the DT-CeNN changes with
different network sizes. Note that the input/output images used for training has the same size of
kxk as the DT-CeNN. We train the DT-CeNN with sizes of 20x20, 24x24 and 32x32 respectively
(corresponding to k£ = 20, 24, 32) to estimate the coefficients. Then, we apply the obtained
coefficients to the 512x512 DT-CeNN using a 512x512 testing image as input. The resulting
output images are shown in Figure 2. We observe that the output results remain consistent across
different values of .

[ ] I ] I
(b) (d)

(2) (©)

Figure 2. 512*512 testing images: (a) input and output with (b) k = 20, (c) k = 24 and (d) k = 32
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Figure 3. Training time (in second) of the DT-CeNN with different sizes: 20x20, 24x24, 32x32
A total of 15,000 samples are generated using the modified Metropolis algorithm. Thus, the
parameter K in equation (14) is equal to 15,000. Figure 3 illustrates the training time of DT-CeNN of
different sizes: 20x20, 24x24 and 32x32. We observe that the training time scales linearly with the
DT-CeNN size. Theoretically, the training time of a 32x32 network will increase by about 1024/400 =
2.56 times compared to a 20x20 network. The actual measured training time is often larger than the
theoretical training time because the longer the computer runs, the hotter it gets.

3.2. Edge detection

In this experiment, we use ‘lena’ standard image — a standard grayscale image of size of
256x256 to train the DT-CeNN. To prepare for training, we use coefficients obtained in the paper
[11] applied to a 256x256 DT-CeNN with the input of the ‘lena’ standard image in order to
obtain a ‘lena’ edge-filtered image as output as shown in Figure 4.

(a) (b)
Figure 4. 256x256 ‘lena’ images prepared for training: (a) original standard image and (b) image
obtained through a 256x256 DT-CeNN using coefficients in [11]

The two images in Figure 4 are cut into two sample sets. Each image is cut into one set, so
totally we have two training sets: one for input and one for output. Each set contains the images
of size of 16x16. These two sets are used to train the 16x16 DT-CeNN. We choose 64 images
from two sets for training (we have 32 input/output image pairs for training). The reason we
choose 32 training samples, that is smaller than 128 training samples in previous experiments, in
this training is because we try to minimize the training time while checking whether the DT-
CeNN still operates stably. During the training process, a total of 15,000 samples will be
generated by the modified Metropolis algorithm. As a result, we obtain z =-0.620913 and:

2.397838 3.155505 -—2.143711 0.104867 —0.938289 —1.269894
A =1-2.756646 3.189971 -—-2.756646(,B =|—-1.138890 6.923888 —1.138890
—2.143711 3.155505 2.397838 —1.269894 —0.938289 0.104867

Finally, we use these obtained coefficients for the 512x512 DT-CeNN and perform on the
512x512 testing images (shown in Figure 5).

The results (Figure 6) show that we only need to train a small DT-CeNN of 16x16 size (vs
512x512) with a small number of training samples (32 samples vs 128 samples) in order to
estimate the coefficients and we can still get the good results. With this method, we see that the
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training time of the DT-CeNN is very small (about 4028 seconds). In theory, the training time
can be reduced by 128*512*512/32*16*16 = 4096 times as compared to training the 512x512
DT-CeNN using 128 input training samples.

(@) (b (©
Figure 5. 512x512 testing images: (a) lena, (b) barbara and (c) mandril
i ; xi N

(@) (b) (©

Figure 6. 512x512 resulting images: (a) lena, (b) barbara and (c) mandril
In the final experiment, we kept the same training sets as above for two scenarios: the original
Metropolis algorithm vs the modified Metropolis algorithm. Then we apply the coefficients
obtained in each scenario to the 512x512 DT-CeNN for testing on 512x512 ‘lena’ standard image

(b)
Figure 7. Output lena images using: (a) modified Metropolis and (b) original Metropolis

The output results are seemly similar (Figure 7) while the training time of the modified
Metropolis algorithm is always lower than that of the original Metropolis algorithm (4028
seconds as compared to 4374 seconds respectively).

4. Conclusion

This paper focuses on estimating the coefficients of a DT-CeNN network using Bayesian
learning combined with the Metropolis method. We have modified the Metropolis algorithm to
reduce the training time without affecting the results of the algorithm. We found that training a
smaller DT-CeNN using the above method also gives results equivalent to training a larger DT-
CeNN, thereby reducing the training cost and increasing the training efficiency. However, to do
this, we need to have suitable input data and in the paper we have used standard gray scale
images of lena and its edge-filtered images as the training data sets for input and output,
respectively. Experiments show that training a small DT-CeNN using a small number of input
training samples takes only a very short training time and the obtained coefficients still meet the
requirements. This is the distillation technique used by DeepSeek - a large language model [18].
In the future, we will aim to train higher-order cellular neural networks using this technique.
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