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1. Introduction 

Cellular neural networks (CeNN) [1], [2] have become a promising area of research, notably 
in image processing [3] – [5]. A CeNN is designed with a set of coefficients (synaptic weights). 
These coefficients need to be estimated (called training) [6]. Many methods have been proposed 
to estimate these coefficients such as multilayer perceptron method (MLP) [7] or recurrent 
perception learning algorithm (RPLA) [8] or heuristic algorithms [9], [10]. Each method has its 
own advantages and disadvantages. Choosing an appropriate method to train a CeNN and 
suitable for the type of data being processed is very important. The training method can also 
affect the training performance.  

In [11], a CeNN is trained by Bayesian learning. This method determines the prior distribution 
based on prior information and the posterior distribution is then calculated using Bayes' theorem. 
A Markov Chain Monte Carlo (MCMC) method, specifically the Metropolis-Hastings algorithm 
[12], [13], is used for generating random samples corresponding to the posterior distribution, 
thereby helping to estimate the coefficients of the network. Unlike other sampling methods, the 
Metropolis–Hastings algorithm allows for the easy and fast generation of a large number of 
random samples from an arbitrary known probability distribution. 

In this work, we target the size of a CeNN that needs to be trained. We train a CeNN 
following the method mentioned above using grayscale image as input data and binary image as 
output data. We find that training a CeNN with a small size also gives results almost equivalent 
to training a CeNN network with a large data. Furthermore, the training time of a small CeNN is 
also lower than that of a large CeNN, thus reducing the training cost and increasing the training 
efficiency of CeNN. 

The structure of the paper is as follows. An overview of the discrete-time CeNN is briefly 
presented in Section 2.1. The Bayesian learning method for estimating the discrete-time CeNN 
coefficients is described in Section 2.2. The Metropolis-Hastings algorithm for model generation 
is presented in Section 2.3. Testing cases of image processing are shown in Section 2.4. And 
comments on the obtained results with future research are discussed in the conclusion. 

2. Methodology 

2.1. Architectures of the Discrete Time Cellular Neural Networks (DT-CeNN) 

A DT-CeNN cell differs from a standard CeNN cell (in that it requires solving ordinary 
differential equations) in the following aspects [1], [2]: 

𝒙𝒊𝒋(𝒏 + 𝟏) = ∑ 𝑨(𝒊, 𝒋; 𝒌, 𝒍)𝑪(𝒌,𝒍)∈𝑺𝒓(𝒊,𝒋) 𝒗𝒌𝒍(𝒏) + ∑ 𝑩(𝒊, 𝒋; 𝒌, 𝒍)𝒖𝒌𝒍𝑪(𝒌,𝒍)∈𝑺𝒓(𝒊,𝒋) + 𝒛   (1) 

and output activation function  𝒇 ቀ𝒙𝒊𝒋(𝒏)ቁ:                                                                                                          

𝒗𝒊𝒋(𝒏) = 𝒇 ቀ𝒙𝒊𝒋(𝒏)ቁ =
𝟏

𝟐
ห𝒙𝒊𝒋(𝒏) + 𝟏ห −

𝟏

𝟐
ห𝒙𝒊𝒋(𝒏) − 𝟏ห                              (2)          

where u, v, and x represent input, output, and state, respectively. 
State x needs to be initialized before processing input data. A and B in the equation (1) are the 

cloning template and control template, respectively. Each cell of a template represents the 
synaptic weights between a cell and its neighbors. Bias z is the cell bias and is constant for every 
cell. Sr denotes the neighborhood of cell C with radius r and r determines how many neighbor 
cells are interconnected with each other. The output equation states that output v is a function of 
state x, leading to recursive property of system. 

The size of input data is the size of DT-CeNN. A stable DT-CeNN has the binary output 
property since the network output converges to {+1, −1}. A DT-CeNN becomes stable if the 
weights of templates A and B are symmetric. In order to be a symmetric and stable CeNN, the 
center parameter of A (self feedback parameter) must be greater than 1 [14]. 
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2.2. Estimation of the DT-CeNN coefficients using Bayesian learning 

Bayesian learning [15] determines the prior distribution based on prior information and the 
posterior distribution is then calculated using Bayes' theorem. This method helps us to estimate 
the unknown coefficients of the DT-CeNN network. In order to do this, we model firstly a DT-
CeNN network as described in [11].  

A cell in the DT-CeNN can be modelled as follows: 

                                         y[n] = 𝑓ஶ
[௡](𝑢, 𝜃)+ ω[n] , n = 0, 1, ..., N−1                                (3) 

where u is input data and y is output. The notation 𝑓ஶ
[௡](𝑢, 𝜃) represents the state of the DT-

CeNN that is stable with the nth input sample. ω[n] represents Additive Gaussian noise adding to 
the nth output y[n]. We suppose that this noise has a distribution of 𝑁(0, 𝜎௪

ଶ).  
Equation (3) is rewritten in vector form as:      

                                                             y = f∞ (u, θ) + ω                                                            (4) 

As emphasized above, a DT-CeNN is stable if the templates A and B are symmetric. Each 
block A and B has size of 3×3 with 5 coefficients that we need to find: 

𝐴 = ൥

𝜃ଵ 𝜃ଶ 𝜃ଷ
𝜃ସ 𝜃ହ 𝜃ସ
𝜃ଷ 𝜃ଶ 𝜃ଵ

൩ , 𝐵 = ൥

𝜃଺ 𝜃଻ 𝜃଼
𝜃ଽ 𝜃ଵ଴ 𝜃ଽ
𝜃଼ 𝜃଻ 𝜃଺

൩ , 𝑧 = 𝜃ଵଵ                                           (5) 

where z is the constant bias for every cell of DT-CeNN. So we need to find coefficients as a 
vector θ ∈ R11×1 defined as follows:  

                                     θ = [θ1  θ2  θ3  θ4  θ5  θ6  θ7  θ8  θ9  θ10  θ11] T                                       (6) 

Applied Bayes theorem, posterior distribution is defined as: 
                                                         p(θ|y) ∈ p(y|θ)p(θ)                                                                   (7) 

  where p(θ) is prior distribution and likelihood p(y|θ) is a Gaussian distribution with mean 
f∞(u, θ) and variance σω

2. Knowing that N input samples are known in advance, p(y|θ) is then 
rewritten as below: 

p(y|θ) = ∏
ଵ

ටଶగఙഘ
మ

ேିଵ
௡ୀ଴ 𝑒

ି
ቆ೤[೙]ష೑ಮ

[೙](ೠ,ഇ)ቇ

మ

మ഑ഘ
మ                                                 (8)                             

 
Prior distribution of θ is supposed ~ N(µθ, Σθ), where µθ  is the mean vector and Σθ is the 

covariance matrix. Therefore, prior probability density function (PDF) is computed as follows: 
 

                      𝑝(𝜃) =
ଵ

ඥ(ଶగ)భభ|ఀഇ|
𝑒ି

൫ഇషµഇ൯
೅
೸ഇ
షభ൫ഇషµഇ൯

మ                                               (9) 

 
Using Equations (7), (8) and (9) we have posterior PDF as: 
 

p(θ|y) ∈ p(y|θ)p(θ) = ∏
ଵ

ටଶగఙഘ
మ

ேିଵ
௡ୀ଴ 𝑒

ି
ቆ೤[೙]ష೑ಮ

[೙](ೠ,ഇ)ቇ

మ

మ഑ഘ
మ x

ଵ

ඥ(ଶగ)భభ|ఀഇ|
𝑒ି

൫ഇషµഇ൯
೅
೸ഇ
షభ൫ഇషµഇ൯

మ     (10) 

We cannot use derivatives to solve equation (10). This is where Markov Chain Monte Carlo 
(MCMC) method is used. 
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2.3.  Metropolis algorithm 

The Metropolis algorithm [12], [13], which is a MCMC method, is used for generating data 
samples. Before creating a sample, we must initialize an initial point to start from. This point can 
be predicted based on prior information. To find the vector θ, we initialize a vector as follows:                                        

                                                         θ(0) = [θ1(0), θ2(0), ..., θ11(0)]T                                              (11) 

with θ(0) being the initial vector corresponding to the chosen initial starting point. 
A sample sequence of vector θ will be obtained in the following way. From the initial point, a 

new vector θnew is generated according to a Gaussian distribution function [12]. Vector θnew can 
be considered as new sample. The new sample can be accepted and inserted into the sample 
sequence with a rate α given in [12], [13]. The rate α is defined as follows:   

𝛼 =
௣൫ఏ೙೐ೢ│௬൯

௣൫ఏ(௜ିଵ)│௬൯
                                                           (12)                                                                                                                             

where p(θnew|y) is the posterior distribution of vector θnew while p(θ(i − 1)|y) is the posterior 
distribution of vector θ(i-1), which is the previous vector sample in the sequence. These posterior 
distributions are computed using equation (10). Note that the vector θ has 11 components, so to 
determine the squared error in equation (10), we have to calculate the sum of the squared errors 
of all the components of the vector. 

The sample sequence will finally be created from K samples [16], [17]:  

                                   θ(i)|y=[θ1(i)|y, θ2(i)|y, …, θ11(i)|y]T where  i=0, 1, …, K-1                       (13) 

The estimated value of the vector θ (so-called θ’) will be approximately equal to the average 
of K samples in the sample sequence (due to the hypothesis that the vector θ follows a normal 
distribution): 

                                                            𝜃ᇱ = 𝐸ൣ𝜃│𝑦൧ ~ ଵ
௄
∑ ൫𝜃(𝑖)│𝑦൯௄ିଵ
௜ୀ଴                                                (14) 

Note that equation (14) is applied for each component of θ(i)|y. The obtained vector θ’ are 
then used in equation (5) to construct the templates A, B and the bias z.  

3.  Image processing results 

In our experiments, we target the size of the DT-CeNN to be trained. Instead of searching for 
coefficients (the cloning template, the control template and the bias) of a DT-CeNN of size of 
n*n corresponding to the input data size, we try to find coefficients for a DT-CeNN of size of k*k 
where k < n. After obtaining coefficients of k*k DT-CeNN, we apply these coefficients to the n*n 
DT-CeNN and then we use this n*n-sized network to process the input data of size of n*n.  

As stated above, the center parameter of block A must be greater than 1. Therefore, the 
Metropolis algorithm is modified in the random generation step with the following rule: if a 
newly generated random value causes the self-feedback parameter to be less than 1, it must be 
regenerated. In equation (11), the vector θ has 11 components, so the aforementioned rule applies 
to the 5th component corresponding to the central parameter of the cloning template. With this 
rule, we find that the training process is faster (as demonstrated in Figure 1) while still ensuring 
equivalent output results. In Figure 1, we run two algorithms: the original Metropolis algorithm 
(referred to as Norm-Metro) and the modified Metropolis algorithm (Modified-Metro) for the 
image edge detection with a 16x16 DT-CeNN using the training input image number of 32. We 
observe that after 15,000 generated samples, the original Metropolis algorithm runs slower as 
compared to the modified Metropolis algorithm, while the results from both algorithms are 
equivalent (as detailed later in Figure 7). Based on this experiment, we decided to use the 
modified Metropolis algorithm in all other experiments presented in this paper. 

During the training phase, we plan to train the DT-CeNN for two image processing cases: 
edge detection and rectangular object filling. We use equations (1), (2) and (4) to calculate f∞(u,θ) 
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for each generated sample. The maximum iterations for calculation of f∞(u,θ) is limited to 100. 
The initial value of state x in equation (1) is chosen as either 1 or 0, depending on the image 
processing case. 

 
 

 
 
 

 

 

 

 

 
 

 

Figure 1. Training time of a 16x16 DT-CeNN: original Metropolis vs modified Metropolis  

 
The initial values of vector θ in equation (11) are set to 1. During the execution of the Modified-
Metro algorithm, the uniform distribution is always U(0,1). The prior distribution p(θ) is a 
Gaussian distribution of N(1,2) while the likelihood p(y|θ) follows a Gaussian distribution of 
N(0,4). All experiments are executed on a laptop with an Intel Core i7 CPU and 8GB RAM. 

 

3.1. Rectangle filling with different sizes of DT-CeNN 

We use a set of input images and a set of output images to train a DT-CeNN to fill the 
rectangle object. We randomly generate 2 sets for training: 128 rectangles containing only an 
outline with a border width of 2 pixels and 128 solid black-filled rectangles. Each input/output 
image pair corresponds to a rectangle of the same size. For different input/output pairs, the 
rectangle size is different. These rectangles have random sizes and are stored in images of a given 
size. Since we have 128 input/output image pairs for training, so parameter N in equation (10) is 
equal to 128. This study aims to examine how the training time of the DT-CeNN changes with 
different network sizes. Note that the input/output images used for training has the same size of 
kxk as the DT-CeNN. We train the DT-CeNN with sizes of 20×20, 24×24 and 32×32 respectively 
(corresponding to k = 20, 24, 32) to estimate the coefficients. Then, we apply the obtained 
coefficients to the 512×512 DT-CeNN using a 512×512 testing image as input. The resulting 
output images are shown in Figure 2. We observe that the output results remain consistent across 
different values of k. 

 
 
 
 
 
 
 

                     (a)                               (b)                               (c)                                  (d) 
 

Figure 2. 512*512 testing images: (a) input and output with (b) k = 20, (c) k = 24 and (d) k = 32  
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Figure 3. Training time (in second) of the DT-CeNN with different sizes: 20x20, 24x24, 32x32 

A total of 15,000 samples are generated using the modified Metropolis algorithm. Thus, the 
parameter K in equation (14) is equal to 15,000. Figure 3 illustrates the training time of DT-CeNN of 
different sizes: 20×20, 24×24 and 32×32. We observe that the training time scales linearly with the 
DT-CeNN size. Theoretically, the training time of a 32x32 network will increase by about 1024/400 = 
2.56 times compared to a 20x20 network. The actual measured training time is often larger than the 
theoretical training time because the longer the computer runs, the hotter it gets. 

3.2. Edge detection  

In this experiment, we use ‘lena’ standard image – a standard grayscale image of size of 
256x256 to train the DT-CeNN. To prepare for training, we use coefficients obtained in the paper 
[11] applied to a 256x256 DT-CeNN with the input of the ‘lena’ standard image in order to 
obtain a ‘lena’ edge-filtered image as output as shown in Figure 4. 

 
 
 
 
 
 
 

                                            (a)                                                         (b) 
Figure 4. 256x256 ‘lena’ images prepared for training: (a) original standard image and (b) image 

obtained through a 256x256 DT-CeNN using coefficients in [11] 

The two images in Figure 4 are cut into two sample sets. Each image is cut into one set, so 
totally we have two training sets: one for input and one for output. Each set contains the images 
of size of 16x16. These two sets are used to train the 16x16 DT-CeNN. We choose 64 images 
from two sets for training (we have 32 input/output image pairs for training). The reason we 
choose 32 training samples, that is smaller than 128 training samples in previous experiments, in 
this training is because we try to minimize the training time while checking whether the DT-
CeNN still operates stably. During the training process, a total of 15,000 samples will be 
generated by the modified Metropolis algorithm. As a result, we obtain z = -0.620913 and: 

𝐴 = ൥
2.397838 3.155505 −2.143711
−2.756646 3.189971 −2.756646
−2.143711 3.155505 2.397838

൩ , 𝐵 = ൥
0.104867 −0.938289 −1.269894
−1.138890 6.923888 −1.138890
−1.269894 −0.938289 0.104867

൩ 

Finally, we use these obtained coefficients for the 512x512 DT-CeNN and perform on the 
512x512 testing images (shown in Figure 5). 

The results (Figure 6) show that we only need to train a small DT-CeNN of 16x16 size (vs 
512x512) with a small number of training samples (32 samples vs 128 samples) in order to 
estimate the coefficients and we can still get the good results. With this method, we see that the 
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training time of the DT-CeNN is very small (about 4028 seconds). In theory, the training time 
can be reduced by 128*512*512/32*16*16 = 4096 times as compared to training the 512x512 
DT-CeNN using 128 input training samples. 

 
 
 
 
 
 
 

                 (a)                                                         (b)                                                      (c) 

Figure 5. 512x512 testing images: (a) lena, (b) barbara and (c) mandril 

 
 
 
 

 
 

                 (a)                                                          (b)                                                        (c) 
Figure 6. 512x512 resulting images: (a) lena, (b) barbara and (c) mandril 

In the final experiment, we kept the same training sets as above for two scenarios: the original 
Metropolis algorithm vs the modified Metropolis algorithm. Then we apply the coefficients 
obtained in each scenario to the 512x512 DT-CeNN for testing on 512x512 ‘lena’ standard image 
as input, and we get the output images as in Figure 7. 

 
 
 
 
 
 

                                         (a)                                                                 (b) 

Figure 7. Output lena images using: (a) modified Metropolis and (b) original Metropolis 

The output results are seemly similar (Figure 7) while the training time of the modified 
Metropolis algorithm is always lower than that of the original Metropolis algorithm (4028 
seconds as compared to 4374 seconds respectively). 

 

4. Conclusion 

This paper focuses on estimating the coefficients of a DT-CeNN network using Bayesian 
learning combined with the Metropolis method. We have modified the Metropolis algorithm to 
reduce the training time without affecting the results of the algorithm. We found that training a 
smaller DT-CeNN using the above method also gives results equivalent to training a larger DT-
CeNN, thereby reducing the training cost and increasing the training efficiency. However, to do 
this, we need to have suitable input data and in the paper we have used standard gray scale 
images of lena and its edge-filtered images as the training data sets for input and output, 
respectively. Experiments show that training a small DT-CeNN using a small number of input 
training samples takes only a very short training time and the obtained coefficients still meet the 
requirements. This is the distillation technique used by DeepSeek - a large language model [18]. 
In the future, we will aim to train higher-order cellular neural networks using this technique. 
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