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Image recovery attacks pose a significant privacy threat in distributed
machine learning systems, even when gradient compression is employed.
These attacks exploit gradient information to reconstruct original training
data, raising serious concerns about data confidentiality. This study
presents an improved method based on Deep leakage from gradients to
enhance image recovery accuracy under compressed gradient conditions.
The proposed method introduces gradient masking to selectively retain
significant gradient components and features a key innovation in the
integration of Total Variation and L6-norm regularization terms to
enhance image smoothness and mitigate artifacts. Experimental
evaluations on MNIST and CIFAR-100 datasets reveal that the improved
method significantly outperforms traditional Deep Leakage From
Gradients and Highly Compressed Gradient Leakage Attack methods,
particularly under extreme compression rates. By reducing visual
distortions while preserving structural details, the proposed method
provides valuable insights for enhancing data security in distributed
learning and developing robust defenses against gradient compression
attacks.
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L dit liéu tir gradients
Tén coéng khéi phuc anh
Hoc may phan tan

Bao mat dir liéu

Nén gradient

Cac cudc tan cong khoi phuc anh dit ra mot mdi de doa nghiém trong ddi
v6i quyén riéng tur trong cac hé thong hoc may phan tan, ngay ca khi sur
dung nén gradient. Nhimg cudc tn céng nay khai thac thong tin gradient
dé tai tao dir liéu huan luyén ban dau, giy ra nhimg lo ngai dang ké vé bao
mat dir liéu. Nghién ctru nay gidi thi€u mot phuong phap cai tién dua trén
Deep Leakage From Gradients nhim ning cao do chinh xac khoi phuc anh
dudi didu kién gradient nén. Phuong phap dé xuét ap dung k¥ thuat mét na
gradient dé chon loc va gnr lai cac thanh phan gradient quan trong, dong
thoi c6 mot cai tién chu chét trong viéc tich hgp cac hé so didu chuin tong
bién thién va L6-norm nhim cai thién d6 muot cia anh va giam thiéu hién
tuong méo. Cac danh gia thyc nghiém trén bg dir liéu MNIST va CIFAR-
100 cho thay phuong phdp cai tién vuot trdi so voi Deep Leakage From
Gradients truyén théng va phwong phap tn cong Highly Compressed
Gradient Leakage Attack, dic biét & muc nén cuc doan. Bing cach giam
thiéu bién dang hinh anh trong khi van bao toan cac chi tiét cdu tric,
phwong phap dé xudt cung cép nhimg hiéu biét quy gid nhim nang cao
bao mat dir licu trong hoc may phén tan va phat trién céc co ché phong thu
manh mé& chdng lai cac cudc tAn cong dua trén nén gradient.
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1. Introduction

The rapid advancement of distributed machine learning systems has significantly enhanced
data processing capabilities, yet it has concurrently introduced critical security vulnerabilities [1].
Although these systems exchange gradients rather than raw data to preserve privacy, recent
research has demonstrated that gradients can be exploited to reconstruct the original training data
[2], [3]- The Deep Leakage from Gradients (DLG) method [4], depicted in Figure 1, facilitates
such attacks by optimizing the gradient difference loss Lgrag gitt = 19f — 9a ||? to align dummy
gradients g, with shared gradients gf. To reduce communication overhead, gradient compression
is widely implemented [5], [6]; however, this practice further complicates attack scenarios by
reducing the fidelity of the transmitted gradient information. Traditional DLG methods struggle
to maintain image quality under compression, frequently yielding artifacts and distortions. Even
the improved Highly Compressed Gradient Leakage Attack (HCGLA) [7], which optimizes
Lgrad_aitf = 119f — g5l|%, fails to adequately address the challenges posed by extreme gradient
compression percentages.
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Figure 1. Framework of DLG and HCGLA

The deterioration in image recovery quality under gradient compression conditions is
attributable to multiple factors, including substantial information loss during compression [6],
[8], noise amplification during optimization [9], [10], and convergence issues in recovery
algorithms [2], [7]. Furthermore, conventional approaches lack advanced regularization
mechanisms, a shortfall that is particularly detrimental when handling complex datasets [4], [9].
To overcome these limitations, the proposed method introduces gradient masking to selectively
retain the most informative gradient components [7]. In addition, it incorporates Total Variation
(TV) and L6-norm regularization terms to enhance image smoothness and mitigate reconstruction
artifacts [11]. These methodological enhancements aim to improve the accuracy of image
recovery attacks under gradient compression, thereby providing valuable insights for bolstering
data security and optimizing efficiency in distributed machine learning systems.

The remainder of this paper is organized as follows: Section 2 details the proposed
methodology, section 3 presents experimental results and evaluation metrics, and section 4
concludes with discussions on implications and directions for future research.

2. Proposed method

To improve the effectiveness of image recovery attacks under conditions of high gradient
compression, this study introduces gradient masking in conjunction with a key innovation, the
integration of TV and L6-norm regularization terms.

2.1. Gradient masking

In gradient compression scenarios, the quality of gradient information varies significantly
across components. To address this, the proposed method incorporates a gradient masking
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technique designed to retain only the most informative gradient components while discarding less
significant ones. This strategic filtering process enhances image recovery accuracy by preserving
key information for optimization.

Gradient significance analysis: A threshold parameter 0 is introduced to classify gradient
components based on their magnitude. Components satisfying the condition |q| > 0 are identified
as significant and retained, while those with |q| < 0 are excluded from the reconstruction process.
This approach draws inspiration from Lin et al. [8], whose work highlighted the efficiency of
gradient compression in reducing communication overhead in distributed systems.

Selective loss computation: The loss function is adapted to concentrate solely on regions with
significant gradients. The revised masked loss function is defined as follows:

Lgrad_diff = ”(gg - gcci) O] MHZ (1)

Where gf and gg represent the compressed gradients of the original and dummy images
respectively. The binary mask matrix M assigns values of 1 to significant gradients and 0
otherwise, while (© denotes the Hadamard (element-wise) product [12], [13].

Targeted parameter optimization: During the optimization phase, updates are applied
exclusively to parameters corresponding to significant gradient locations. Parameters associated
with negligible gradients remain unchanged, ensuring that computational resources focus only on
meaningful data.

By selectively emphasizing critical gradient components, this method achieves multiple
benefits. It effectively reduces the search space dimensionality, accelerates convergence, and
improves the quality of recovered images under gradient compression. The proposed gradient
masking strategy enhances robustness by focusing on gradient regions that encode the most
informative features, improving reconstruction fidelity even in highly compressed environments.

2.2. Integration of regularization terms

To enhance the quality of recovered images, the proposed method incorporates TV and L6-
norm regularization into the loss function. These regularization techniques are widely recognized
in image processing for improving visual clarity and reducing noise artifacts [14], [15].

TV regularization: The TV term is designed to minimize local intensity variations by encouraging
consistency between neighboring pixels [14]. This process effectively suppresses noise while
preserving sharp edges and structural details. The TV regularization term is defined as follows:

Ly = Z \/(xi+1,j - xi,j)z + (%41 — xi,j)z )
i,j

Where x; ; represents the pixel value at position (i, j) of the dummy image being reconstructed.

L6-norm regularization: The L6-norm regularization term is designed to penalize extreme
pixel values by enforcing a higher-order sparsity constraint [16]. This process stabilizes the
optimization and prevents over-amplification of specific pixel intensities, thereby reducing
reconstruction artifacts. The L6-norm regularization term is defined as follows:

Lsixnorm = Z(X{)G 3)

where x; represents the pixel intensity at position i.

Overall loss function: The final objective function combines these regularization terms with
the primary gradient matching loss, ensuring a balance between image fidelity and noise
reduction. The complete loss function is expressed as:

Lx = Lgrad_diff +ary. LTV + Asixnorm: Lsixnorm “4)

where ary and Qgixnorm are hyperparameters that control the contribution of each

regularization term and are optimally tuned via grid search to balance the trade-off between noise
reduction and detail preservation.
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Figure 2. Framework of proposed method

As depicted in Figure 2, the proposed method integrates gradient masking with TV and L6-
norm regularization techniques. The framework highlights the sequential process of gradient
significance analysis, selective loss computation, and targeted parameter optimization,
ensuring efficient convergence and improved reconstruction quality under gradient
compression conditions.

3. Experiment and evaluation
3.1. Experimental setting

The experimental evaluation was performed on the MNIST and CIFAR-100 datasets using
the LeNet architecture, in alignment with previous studies [4]. MNIST was employed as a
benchmark for simpler scenarios, whereas CIFAR-100 was utilized to assess performance on
more complex, color image data. All experiments were implemented in PyTorch and executed
on an NVIDIA Quadro T1000 GPU. The dummy images were initialized with uniform noise,
and the LBFGS optimizer was used with a learning rate of 1.0 for 300 iterations per recovery
attempt. To simulate realistic distributed learning environments, gradient compression
percentages were varied from 80% down to 0.1%. The proposed method was rigorously
compared against DLG and HCGLA, with the regularization coefficients optimized via grid
search over the range from 10-4 to 10-10 to achieve a balance between gradient matching
precision and image smoothness. Performance was quantitatively evaluated using Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure
(SSIM), while qualitative analysis focused on visual fidelity and artifact reduction, following a
similar evaluation approach outlined in [7]. Specifically, MSE quantifies the average squared
difference between the pixels of the original and recovered images, where lower values indicate
a closer resemblance. PSNR measures image quality based on the ratio of the original signal to
noise, with higher values reflecting better reconstruction quality. SSIM evaluates the structural
similarity between the original and recovered images, with values closer to 1 indicating higher
structural and visual resemblance.

3.2. Results and Evaluation
3.2.1. Attack results on CIFAR-100

The experimental results on the CIFAR-100 dataset clearly show that the proposed method
outperforms existing approaches across various gradient compression percentages, as evidenced
by both quantitative metrics and visual assessments. At a 50% compression percentage, it
achieves an MSE of 0.0016, which is substantially lower than the MSE values of 0.27471 for
DLG and 0.00604 for HCGLA. Furthermore, it attains a high PSNR of 37.82992 dB and an
SSIM of 0.98906, as detailed in Table 1. Under more extreme compression conditions, such as a
1% compression percentage, the method records an MSE of 0.00901 and an SSIM of 0.56110. In
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stark contrast, DLG fails entirely under such conditions and HCGLA experiences significant
degradation, yielding a PSNR of 7.71094 dB and an SSIM of 0.04104. These results underscore
the enhanced reconstruction fidelity and robustness of the proposed method in scenarios
characterized by severe gradient compression.

Table 1. Attack results on CIFAR-100 under gradient compression percentages

Methods Full gradient 80% 60% 50%
MSE () PSNR (1) SSIM (1) MSE (}) PSNR (1) SSIM (1) MSE (}) PSNR (1) SSIM (1) MSE (|) PSNR (1) SSIM (1)
DLG 3.46*10° 54.61222 0.99976 0.03754 14.25507 0.37049 0.20990 6.77982 0.05665 0.27471 5.61123  0.03210
HCGLA 3.31%10° 54.79621 0.99977 4.53*10° 53.44262 0.99957 0.00022 36.60564 0.98174 0.00604 22.18687 0.72289

Proposed Method 7.95%107 60.99852  0.99994 2.45%10° 56.11692 0.99981 4.15%105 43.81782 0.99672 0.00016 37.82992 0.98906

20% 10% 1% 0.1%
MSE (1) PSNR (1) SSIM (1) MSE ()) PSNR (1) SSIM (1) MSE (}) PSNR (1) SSIM (1) MSE (1) PSNR ({) SSIM (})
DLG 032830 4.83728 0.01966 033922 4.69509 0.01551 0.33558 4.74203 0.01499 035443 4.50466 0.00178
HCGLA 0.14136  8.49658 0.11053 031548 501023 0.01610 0.16940 7.71094 0.04104 0.18172 7.40586 0.01468

Proposed Method  0.00184 27.32841 0.88635  0.00357 24.47342 0.79773  0.00901 20.45186 0.56110 0.02539 15.95388 0.21914
Initial dummy  Full gradient 80% 60%
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Figure 3. Recovered CIFAR-100 images under gradient compression percentages

Visual analysis in Figure 3 shows that the proposed method effectively preserves structural
details and maintains accurate color distributions even at compression levels as high as 80%. In
contrast, the DLG approach produces largely unrecognizable images due to significant noise
amplification. Although HCGLA exhibits a slight improvement over DLG, it still suffers from
significant artifacts when compression percentage exceeds 50%. Additionally, the convergence
curve presented in Figure 4 underscores the stability of the proposed method, achieving near-
optimal MSE and SSIM values within 150 iterations. Notably, the final MSE of the proposed
method is 0.00016, substantially lower than HCGLA’s 0.00843, emphasizing its superior overall
reconstruction performance.

o MSE Comparison PSNR Comparison SSIM Comparison

-#- HCGLA
—#— Proposed method 35

0.1% : Original image

DLG

HCGLA

Proposed Method

0.8

0.2

10 -#- HCGLA
—&— Proposed method —&— Proposed method
-4
1
0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Iteration Iteration Iteration

Figure 4. Performance evaluation at 50% compression on CIFAR-100
3.2.2. Attack results on MNIST

The proposed method exhibits remarkable robustness on the MNIST under diverse gradient
compression percentages, outperforming DLG and HCGLA in both quantitative metrics and
visual recovery quality. At 50% compression, as shown in Table 2, the method achieves near-
perfect reconstruction with an MSE of 3.06*107'°, PSNR of 95.13612 dB, and SSIM of 1.0,
surpassing DLG, which has an MSE of 0.024 and an SSIM of 0.37429, as well as HCGLA,
which has an MSE of 3.74*10® and an SSIM of 0.99997. Notably, even under extreme
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compression at 0.1%, the method maintains a high SSIM of 0.07065, compared to HCGLA’s
0.00660 and DLG’s failure, demonstrating its ability to preserve structural integrity in highly
constrained settings.

Table 2. Attack results on MNIST under gradient compression percentages

Methods Full gradient 80% 60% 50%
MSE (1) PSNR (1) SSIM (1) MSE (1) PSNR (1) SSIM (1) MSE (/) PSNR (1) SSIM (1) MSE (}) PSNR (1) SSIM (1)
DLG 2.76*10% 7559343 0.99994 0.00076 31.18187 0.67541 0.00716 21.45221 0.46109 0.02414 16.17204 0.37429

HCGLA 1.74*%10® 77.58341 0.99998 1.87*10° 77.28295 0.99998 2.11*10® 76.74818 0.99999 3.74*10° 74.27115 0.99997
Proposed Method 9.73*107'" 100.1185 1.0 1.54%10°'° 98.13414 1.0 2.12*107° 96.73004 1.0 3.06*107° 95.13612 1.0

20% 10% 1% 0.1%
MSE () PSNR (1) SSIM (1) MSE (1) PSNR (1) SSIM (1) MSE (|) PSNR (1) SSIM (1) MSE (|) PSNR (1) SSIM (1)
DLG 0.301445 520792 0.08600 0.46157 3.35763 0.04038 0.48339 3.15697 0.00409 0.51480 2.88359 0.00706
HCGLA 8.48*%107 60.71647 0. 99936 0.00017 37.74665 0.94132  0.28272 5.48636 0.06752 0.30845 5.10817  0.00660
Proposed Method 1.35%10° 88.68839 6.46*10° 81.89783 1.0 0.01024 19.89740 0.60730  0.07903 11.02196 0.07065
lmlml dummy Full gradient 80% 60% 50% ’70‘7( l()‘7z 1% 0.1% Original image
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Figure 5. Recovered MNIST images under gradient compression percentages

Visual comparisons in Figure 5 underscore the method's superiority, as the recovered MNIST
digits retain sharp edges and clear, recognizable shapes even at compression levels as high as
10% and 1%. In contrast, both DLG and HCGLA yield outputs that are either distorted or entirely
unrecognizable. Moreover, the convergence analysis depicted in Figure 6 further highlights the
stability of the proposed method, achieving an MSE of 6.46*10° and an SSIM of 1.0 at a 10%
compression level after 300 iterations. This performance is significantly better than that of
HCGLA, which reports an MSE of 0.00017 and an SSIM of 0.94132.
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Figure 6. Performance evaluation at 10% compression on MNIST
3.3. Performance comparison

The proposed method consistently outperforms DLG and HCGLA across all compression
percentages, achieving 2 to 3 orders of magnitude lower MSE and 10 to 30 dB higher PSNR.
This advantage is particularly evident at a 0.1% compression percentage, where SSIM reaches
0.22 on CIFAR-100 and 0.07 on MNIST. Such robustness arises from the integration of TV-L6
regularization, which enhances structural detail preservation by balancing pixel smoothness and
intensity distribution. While DLG fails beyond 10% compression and HCGLA deteriorates
significantly, the proposed method effectively reconstructs key features like edges and color
patterns with minimal artifacts, improving both visual fidelity and data protection in privacy-
critical environments.
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4. Conclusion

This study introduces an enhanced image recovery attack method that effectively addresses
critical limitations inherent in existing techniques under gradient compression conditions. By
integrating gradient masking with TV-L6 regularization, the proposed approach achieves robust
reconstruction accuracy even at extreme compression levels and significantly outperforms both
DLG and HCGLA. These findings underscore the urgent need for more advanced privacy
protection mechanisms in federated learning systems. Future research should explore adaptive
regularization strategies and adversarial training techniques to further mitigate reconstruction
risks, particularly in heterogeneous or non-I1ID data environments. This work not only advances
our understanding of gradient-based privacy vulnerabilities but also lays a solid foundation for
the development of stronger defense mechanisms, ultimately promoting safer and more efficient
distributed learning frameworks.
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