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ARTICLE INFO   ABSTRACT 

Received: 21/3/2025 Image recovery attacks pose a significant privacy threat in distributed 
machine learning systems, even when gradient compression is employed. 
These attacks exploit gradient information to reconstruct original training 
data, raising serious concerns about data confidentiality. This study 
presents an improved method based on Deep leakage from gradients to 
enhance image recovery accuracy under compressed gradient conditions. 
The proposed method introduces gradient masking to selectively retain 
significant gradient components and features a key innovation in the 
integration of Total Variation and L6-norm regularization terms to 
enhance image smoothness and mitigate artifacts. Experimental 
evaluations on MNIST and CIFAR-100 datasets reveal that the improved 
method significantly outperforms traditional Deep Leakage From 
Gradients and Highly Compressed Gradient Leakage Attack methods, 
particularly under extreme compression rates. By reducing visual 
distortions while preserving structural details, the proposed method 
provides valuable insights for enhancing data security in distributed 
learning and developing robust defenses against gradient compression 
attacks. 
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CẢI TIẾN HÀM MỤC TIÊU TRONG CÁC TẤN CÔNG KHÔI PHỤC ẢNH 
DƯỚI ĐIỀU KIỆN NÉN GRADIENT TRONG HỌC LIÊN KẾT 
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THÔNG TIN BÀI BÁO   TÓM TẮT 

Ngày nhận bài: 21/3/2025 Các cuộc tấn công khôi phục ảnh đặt ra một mối đe dọa nghiêm trọng đối 
với quyền riêng tư trong các hệ thống học máy phân tán, ngay cả khi sử 
dụng nén gradient. Những cuộc tấn công này khai thác thông tin gradient 
để tái tạo dữ liệu huấn luyện ban đầu, gây ra những lo ngại đáng kể về bảo 
mật dữ liệu. Nghiên cứu này giới thiệu một phương pháp cải tiến dựa trên 
Deep Leakage From Gradients nhằm nâng cao độ chính xác khôi phục ảnh 
dưới điều kiện gradient nén. Phương pháp đề xuất áp dụng kỹ thuật mặt nạ 
gradient để chọn lọc và giữ lại các thành phần gradient quan trọng, đồng 
thời có một cải tiến chủ chốt trong việc tích hợp các hệ số điều chuẩn tổng 
biến thiên và L6-norm nhằm cải thiện độ mượt của ảnh và giảm thiểu hiện 
tượng méo. Các đánh giá thực nghiệm trên bộ dữ liệu MNIST và CIFAR-
100 cho thấy phương pháp cải tiến vượt trội so với Deep Leakage From 
Gradients truyền thống và phương pháp tấn công Highly Compressed 
Gradient Leakage Attack, đặc biệt ở mức nén cực đoan. Bằng cách giảm 
thiểu biến dạng hình ảnh trong khi vẫn bảo toàn các chi tiết cấu trúc, 
phương pháp đề xuất cung cấp những hiểu biết quý giá nhằm nâng cao 
bảo mật dữ liệu trong học máy phân tán và phát triển các cơ chế phòng thủ 
mạnh mẽ chống lại các cuộc tấn công dựa trên nén gradient. 
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1. Introduction 

The rapid advancement of distributed machine learning systems has significantly enhanced 
data processing capabilities, yet it has concurrently introduced critical security vulnerabilities [1]. 
Although these systems exchange gradients rather than raw data to preserve privacy, recent 
research has demonstrated that gradients can be exploited to reconstruct the original training data 
[2], [3]. The Deep Leakage from Gradients (DLG) method [4], depicted in Figure 1, facilitates 
such attacks by optimizing the gradient difference loss 𝐿୥୰ୟୢ_ୢ୧୤୤ =  ‖𝑔௧

௖ − 𝑔ௗ‖ଶ to align dummy 
gradients 𝑔ௗ with shared gradients 𝑔௧

௖. To reduce communication overhead, gradient compression 
is widely implemented [5], [6]; however, this practice further complicates attack scenarios by 
reducing the fidelity of the transmitted gradient information. Traditional DLG methods struggle 
to maintain image quality under compression, frequently yielding artifacts and distortions. Even 
the improved Highly Compressed Gradient Leakage Attack (HCGLA) [7], which optimizes 
𝐿୥୰ୟୢ_ୢ୧୤୤ =  ‖𝑔௧

௖ − 𝑔ௗ
௖ ‖ଶ, fails to adequately address the challenges posed by extreme gradient 

compression percentages. 

 
Figure 1. Framework of DLG and HCGLA 

The deterioration in image recovery quality under gradient compression conditions is 
attributable to multiple factors, including substantial information loss during compression [6], 
[8], noise amplification during optimization [9], [10], and convergence issues in recovery 
algorithms [2], [7]. Furthermore, conventional approaches lack advanced regularization 
mechanisms, a shortfall that is particularly detrimental when handling complex datasets [4], [9]. 
To overcome these limitations, the proposed method introduces gradient masking to selectively 
retain the most informative gradient components [7]. In addition, it incorporates Total Variation 
(TV) and L6-norm regularization terms to enhance image smoothness and mitigate reconstruction 
artifacts [11]. These methodological enhancements aim to improve the accuracy of image 
recovery attacks under gradient compression, thereby providing valuable insights for bolstering 
data security and optimizing efficiency in distributed machine learning systems. 

The remainder of this paper is organized as follows: Section 2 details the proposed 
methodology, section 3 presents experimental results and evaluation metrics, and section 4 
concludes with discussions on implications and directions for future research. 

2. Proposed method 

To improve the effectiveness of image recovery attacks under conditions of high gradient 
compression, this study introduces gradient masking in conjunction with a key innovation, the 
integration of TV and L6-norm regularization terms. 

2.1. Gradient masking 

In gradient compression scenarios, the quality of gradient information varies significantly 
across components. To address this, the proposed method incorporates a gradient masking 
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technique designed to retain only the most informative gradient components while discarding less 
significant ones. This strategic filtering process enhances image recovery accuracy by preserving 
key information for optimization. 

Gradient significance analysis: A threshold parameter θ is introduced to classify gradient 
components based on their magnitude. Components satisfying the condition |q|  θ are identified 
as significant and retained, while those with |q| < θ are excluded from the reconstruction process. 
This approach draws inspiration from Lin et al. [8], whose work highlighted the efficiency of 
gradient compression in reducing communication overhead in distributed systems. 

Selective loss computation: The loss function is adapted to concentrate solely on regions with 
significant gradients. The revised masked loss function is defined as follows: 

𝐿୥୰ୟୢ_ୢ୧୤୤ = ‖(𝑔௧
௖ − 𝑔ௗ

௖ ) ⊙ 𝐌‖ଶ (1) 

Where 𝑔௧
௖ and 𝑔ௗ

௖  represent the compressed gradients of the original and dummy images 
respectively. The binary mask matrix M  assigns values of 1 to significant gradients and 0 
otherwise, while ⊙ denotes the Hadamard (element-wise) product [12], [13]. 

Targeted parameter optimization: During the optimization phase, updates are applied 
exclusively to parameters corresponding to significant gradient locations. Parameters associated 
with negligible gradients remain unchanged, ensuring that computational resources focus only on 
meaningful data. 

By selectively emphasizing critical gradient components, this method achieves multiple 
benefits. It effectively reduces the search space dimensionality, accelerates convergence, and 
improves the quality of recovered images under gradient compression. The proposed gradient 
masking strategy enhances robustness by focusing on gradient regions that encode the most 
informative features, improving reconstruction fidelity even in highly compressed environments. 

2.2. Integration of regularization terms 

To enhance the quality of recovered images, the proposed method incorporates TV and L6-
norm regularization into the loss function. These regularization techniques are widely recognized 
in image processing for improving visual clarity and reducing noise artifacts [14], [15].  

 TV regularization: The TV term is designed to minimize local intensity variations by encouraging 
consistency between neighboring pixels [14]. This process effectively suppresses noise while 
preserving sharp edges and structural details. The TV regularization term is defined as follows: 

𝐿்௏ = ෍ ට൫𝑥௜ାଵ,௝ − 𝑥௜,௝൯
ଶ

+ ൫𝑥௜,௝ାଵ − 𝑥௜,௝൯
ଶ

௜,௝

 
 

(2) 

Where 𝑥௜,௝ represents the pixel value at position (𝑖, 𝑗) of the dummy image being reconstructed. 
L6-norm regularization: The L6-norm regularization term is designed to penalize extreme 

pixel values by enforcing a higher-order sparsity constraint [16]. This process stabilizes the 
optimization and prevents over-amplification of specific pixel intensities, thereby reducing 
reconstruction artifacts. The L6-norm regularization term is defined as follows: 

𝐿௦௜௫௡௢௥௠ = ෍(𝑥௜
ᇱ)଺

௜

  
(3) 

where 𝑥௜
ᇱ represents the pixel intensity at position 𝑖. 

Overall loss function: The final objective function combines these regularization terms with 
the primary gradient matching loss, ensuring a balance between image fidelity and noise 
reduction. The complete loss function is expressed as: 

𝐿௫ = 𝐿௚௥௔ௗ_ௗ௜௙௙ + 𝛼்௏ . 𝐿்௏ + 𝛼௦௜௫௡௢௥௠ . 𝐿௦௜௫௡௢௥௠ (4) 

where 𝛼୘୚ and 𝛼ୱ୧୶୬୭୰୫ are hyperparameters that control the contribution of each 
regularization term and are optimally tuned via grid search to balance the trade-off between noise 
reduction and detail preservation. 
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Figure 2. Framework of proposed method 

As depicted in Figure 2, the proposed method integrates gradient masking with TV and L6-
norm regularization techniques. The framework highlights the sequential process of gradient 
significance analysis, selective loss computation, and targeted parameter optimization, 
ensuring efficient convergence and improved reconstruction quality under gradient 
compression conditions. 

3. Experiment and evaluation 

3.1. Experimental setting 

The experimental evaluation was performed on the MNIST and CIFAR-100 datasets using 
the LeNet architecture, in alignment with previous studies [4]. MNIST was employed as a 
benchmark for simpler scenarios, whereas CIFAR-100 was utilized to assess performance on 
more complex, color image data. All experiments were implemented in PyTorch and executed 
on an NVIDIA Quadro T1000 GPU. The dummy images were initialized with uniform noise, 
and the LBFGS optimizer was used with a learning rate of 1.0 for 300 iterations per recovery 
attempt. To simulate realistic distributed learning environments, gradient compression 
percentages were varied from 80% down to 0.1%. The proposed method was rigorously 
compared against DLG and HCGLA, with the regularization coefficients optimized via grid 
search over the range from 10-4 to 10-10 to achieve a balance between gradient matching 
precision and image smoothness. Performance was quantitatively evaluated using Mean Squared 
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure 
(SSIM), while qualitative analysis focused on visual fidelity and artifact reduction, following a 
similar evaluation approach outlined in [7]. Specifically, MSE quantifies the average squared 
difference between the pixels of the original and recovered images, where lower values indicate 
a closer resemblance. PSNR measures image quality based on the ratio of the original signal to 
noise, with higher values reflecting better reconstruction quality. SSIM evaluates the structural 
similarity between the original and recovered images, with values closer to 1 indicating higher 
structural and visual resemblance. 

3.2. Results and Evaluation 

3.2.1. Attack results on CIFAR-100 

The experimental results on the CIFAR-100 dataset clearly show that the proposed method 
outperforms existing approaches across various gradient compression percentages, as evidenced 
by both quantitative metrics and visual assessments. At a 50% compression percentage, it 
achieves an MSE of 0.0016, which is substantially lower than the MSE values of 0.27471 for 
DLG and 0.00604 for HCGLA. Furthermore, it attains a high PSNR of 37.82992 dB and an 
SSIM of 0.98906, as detailed in Table 1. Under more extreme compression conditions, such as a 
1% compression percentage, the method records an MSE of 0.00901 and an SSIM of 0.56110. In 
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stark contrast, DLG fails entirely under such conditions and HCGLA experiences significant 
degradation, yielding a PSNR of 7.71094 dB and an SSIM of 0.04104. These results underscore 
the enhanced reconstruction fidelity and robustness of the proposed method in scenarios 
characterized by severe gradient compression. 

Table 1. Attack results on CIFAR-100 under gradient compression percentages 

Methods 
Full gradient 80% 60% 50% 

MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) 
DLG 3.46*10-6 54.61222 0.99976 0.03754 14.25507 0.37049 0.20990 6.77982 0.05665 0.27471 5.61123 0.03210 

HCGLA 3.31*10-6 54.79621 0.99977 4.53*10-6 53.44262 0.99957 0.00022 36.60564 0.98174 0.00604 22.18687 0.72289 
Proposed Method 7.95*10-7 60.99852 0.99994 2.45*10-6 56.11692 0.99981 4.15*10-5 43.81782 0.99672 0.00016 37.82992 0.98906 

 
 

20% 10% 1% 0.1% 
MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) 

DLG 0.32830 4.83728 0.01966 0.33922 4.69509 0.01551 0.33558 4.74203 0.01499 0.35443 4.50466 0.00178 
HCGLA 0.14136 8.49658 0.11053 0.31548 5.01023 0.01610 0.16940 7.71094 0.04104 0.18172 7.40586 0.01468 

Proposed Method 0.00184 27.32841 0.88635 0.00357 24.47342 0.79773 0.00901 20.45186 0.56110 0.02539 15.95388 0.21914 

 
Figure 3. Recovered CIFAR-100 images under gradient compression percentages 

Visual analysis in Figure 3 shows that the proposed method effectively preserves structural 
details and maintains accurate color distributions even at compression levels as high as 80%. In 
contrast, the DLG approach produces largely unrecognizable images due to significant noise 
amplification. Although HCGLA exhibits a slight improvement over DLG, it still suffers from 
significant artifacts when compression percentage exceeds 50%. Additionally, the convergence 
curve presented in Figure 4 underscores the stability of the proposed method, achieving near-
optimal MSE and SSIM values within 150 iterations. Notably, the final MSE of the proposed 
method is 0.00016, substantially lower than HCGLA’s 0.00843, emphasizing its superior overall 
reconstruction performance. 

 
Figure 4. Performance evaluation at 50% compression on CIFAR-100 

3.2.2. Attack results on MNIST 

The proposed method exhibits remarkable robustness on the MNIST under diverse gradient 
compression percentages, outperforming DLG and HCGLA in both quantitative metrics and 
visual recovery quality. At 50% compression, as shown in Table 2, the method achieves near-
perfect reconstruction with an MSE of 3.06*10-10, PSNR of 95.13612 dB, and SSIM of 1.0, 
surpassing DLG, which has an MSE of 0.024 and an SSIM of 0.37429, as well as HCGLA, 
which has an MSE of 3.74*10-8 and an SSIM of 0.99997. Notably, even under extreme 



TNU Journal of Science and Technology 230(07): 95 - 101 
 

http://jst.tnu.edu.vn                                                  100                                                 Email: jst@tnu.edu.vn 

compression at 0.1%, the method maintains a high SSIM of 0.07065, compared to HCGLA’s 
0.00660 and DLG’s failure, demonstrating its ability to preserve structural integrity in highly 
constrained settings. 

Table 2. Attack results on MNIST under gradient compression percentages 

Methods 
Full gradient 80% 60% 50% 

MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) 
DLG 2.76*10-8 75.59343 0.99994 0.00076 31.18187 0.67541 0.00716 21.45221 0.46109 0.02414 16.17204 0.37429 

HCGLA 1.74*10-8 77.58341 0.99998 1.87*10-8 77.28295 0.99998 2.11*10-8 76.74818 0.99999 3.74*10-8 74.27115 0.99997 
Proposed Method 9.73*10-11 100.1185 1.0 1.54*10-10 98.13414 1.0 2.12*10-10 96.73004 1.0 3.06*10-10 95.13612 1.0 

 
 

20% 10% 1% 0.1% 
MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) MSE (↓) PSNR (↑) SSIM (↑) 

DLG 0.301445 5.20792 0.08600 0.46157 3.35763 0.04038 0.48339 3.15697 0.00409 0.51480 2.88359 0.00706 
HCGLA 8.48*10-7 60.71647 0.99936 0.00017 37.74665 0.94132 0.28272 5.48636 0.06752 0.30845 5.10817 0.00660 

Proposed Method 1.35*10-9 88.68839 1.0 6.46*10-9 81.89783 1.0 0.01024 19.89740 0.60730 0.07903 11.02196 0.07065 

 
Figure 5. Recovered MNIST images under gradient compression percentages 

Visual comparisons in Figure 5 underscore the method's superiority, as the recovered MNIST 
digits retain sharp edges and clear, recognizable shapes even at compression levels as high as 
10% and 1%. In contrast, both DLG and HCGLA yield outputs that are either distorted or entirely 
unrecognizable. Moreover, the convergence analysis depicted in Figure 6 further highlights the 
stability of the proposed method, achieving an MSE of 6.46*10-9 and an SSIM of 1.0 at a 10% 
compression level after 300 iterations. This performance is significantly better than that of 
HCGLA, which reports an MSE of 0.00017 and an SSIM of 0.94132. 

Figure 6. Performance evaluation at 10% compression on MNIST 

3.3. Performance comparison 

The proposed method consistently outperforms DLG and HCGLA across all compression 
percentages, achieving 2 to 3 orders of magnitude lower MSE and 10 to 30 dB higher PSNR. 
This advantage is particularly evident at a 0.1% compression percentage, where SSIM reaches 
0.22 on CIFAR-100 and 0.07 on MNIST. Such robustness arises from the integration of TV-L6 
regularization, which enhances structural detail preservation by balancing pixel smoothness and 
intensity distribution. While DLG fails beyond 10% compression and HCGLA deteriorates 
significantly, the proposed method effectively reconstructs key features like edges and color 
patterns with minimal artifacts, improving both visual fidelity and data protection in privacy-
critical environments. 
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4. Conclusion 

This study introduces an enhanced image recovery attack method that effectively addresses 
critical limitations inherent in existing techniques under gradient compression conditions. By 
integrating gradient masking with TV-L6 regularization, the proposed approach achieves robust 
reconstruction accuracy even at extreme compression levels and significantly outperforms both 
DLG and HCGLA. These findings underscore the urgent need for more advanced privacy 
protection mechanisms in federated learning systems. Future research should explore adaptive 
regularization strategies and adversarial training techniques to further mitigate reconstruction 
risks, particularly in heterogeneous or non-IID data environments. This work not only advances 
our understanding of gradient-based privacy vulnerabilities but also lays a solid foundation for 
the development of stronger defense mechanisms, ultimately promoting safer and more efficient 
distributed learning frameworks. 
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