TNU Journal of Science and Technology

230(07): 246 - 254

OPTIMIZING YOLOV9 AND YOLOV10 MODELS FOR BRAIN TUMOR
DETECTION: A LEARNING RATE STUDY ON MRI IMAGES

Ngo Thi Lan”, Bui Xuan Tung
Tay Do University

ARTICLE INFO ABSTRACT
Received: 03/4/2025 This study evaluates the performance of YOLOv9 and YOLOv10
. variants in detecting brain tumors in MRI images. We compared four
Revised:  29/6/2025 ;) dels (YOLOV9t, YOLOV9s, YOLOvIOn, YOLOv10s) while
Published: 29/6/2025 optimizing the learning rate parameter to achieve superior performance.
Using the Brain Tumor Segmentation dataset from Roboflow
KEYWORDS containing 6,638 images divided into training (80%) and testing (20%)

Brain tumor detection
Deep learning
Medical imaging
YOLO models

Learning rate

sets. The models were trained with hyperparameters Optimizer = SGD,
1r0 = 0.00005, 1r0 = 0.0001, Momentum = 0.937, Epoch = 150, Patience
= 0, Batchsize = 64 and trained on Kaggle with appropriate GPU
configuration. Our findings demonstrate that YOLOv10s with 1r0 =
0.0001 achieves the highest overall performance with mAP(50) =
94.3%, mAP(50-95) = 72.3%, Recall = 87.3%, and Precision = 93.9%.
Although the YOLOv10s model with 1r0 = 0.00005 shows higher
accuracy (94.2%), the increased learning rate provides a better balance
between detection metrics and convergence speed.

TOI UU HOA CAC MO HINH YOLOVY VA YOLOV10 PHAT HIEN KHOI U
NAO: NGHIEN CUU TOC PQ HQC TAP TREN HINH ANH MRI

Ngb Thi Lan”, Bui Xuin Tung
Trieong Pai hoc Tay Do

THONG TIN BAI BAO

TOM TAT

03/4/2025
29/6/2025
29/6/2025

Ngay nhén bai:
Ngay hoan thién:
Ngay dang:

TU KHOA

Phat hién khdi u ndo
Hoc sau

Chup anh y té

M hinh YOLO

Téc d6 hoc

Nghién ciru nay danh gid hiéu suit cua cic bién thé YOLOv9 va
YOLOV10 trong viéc phat hién khéi u néo trong hinh anh MRI. Ching
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tham sb Optimizer = SGD, 1r0 = 0,00005, 1r0 = 0,0001, Momentum =
0,937, Epoch = 150, Patience = 0, Batchsize = 64 va duoc huén luyén
trén Kaggle v6i cAu hinh GPU phu hop. Phat hién cua chung t6i ching
minh réng YOLOv10s v6i Ir0 = 0,0001 dat hiéu suit téng thé cao nhat
voi mAP(50) = 94,3%, mAP(50-95) = 72,3%, Recall = 87,3% va
Precision = 93,9%. Mac du m6 hinh YOLOv10s véi Ir0 = 0,00005 cho
thdy d6 chinh xac cao hon (94,2%), tc d6 hoc ting 1én mang lai sy cén
béng tdt hon giira sb lidu phéat hién va tbc do hoi tu.
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1. Introduction

Detecting brain tumors from medical imaging is challenging due to the complexity of brain
anatomy, the variability in tumor characteristics, and the high precision required for clinical
diagnosis. Brain tumor detection remains one of the most critical tasks in medical imaging, as early
and accurate identification directly impacts patient prognosis, treatment planning, and survival rates.
Traditional manual interpretation of magnetic resonance imaging (MRI) scans is time-consuming,
subjective, and prone to human error, creating an urgent need for automated, reliable, and efficient
detection systems that can assist clinicians in making accurate diagnoses.

The primary research problem in this study is the optimization of state-of-the-art object detection
models for brain tumor identification in MRI images, specifically focusing on the impact of learning
rate hyperparameter on detection performance, convergence speed, and generalization ability.

Many studies have successfully applied deep learning approaches to detect brain tumors,
demonstrating the potential of automated systems in medical imaging. A. Younis et al. [1] achieved
98.5% accuracy with the VGG-16 model on 253 MRI images, establishing early benchmarks for
CNN-based tumor detection. M. Siar [2] and his team achieved 99.12% accuracy by combining pre-
trained weights with a clustering algorithm, showing the effectiveness of transfer learning approaches
in medical applications.

Recent advances have focused on YOLO-based architectures for their real-time detection
capabilities. M. F. Almufareh et al. [3] applied YOLO models (YOLOv5 achieved mAP 0.947,
YOLOvV7 achieved mAP 0.941) to detect and segment brain tumors, demonstrating the effectiveness
of single-stage detectors in medical imaging. A. B. Abdusalomov [4] improved YOLOvV7 with
CBAM, SPPF+ and BiFPN components, achieving 99.5% higher accuracy than previous state-of-
the-art models, illustrating the potential of attention mechanisms and feature fusion techniques.

Other significant contributions include S. R. Gunasekara et al. [5] proposed a three-stage method
combining CNN, R-CNN and Chan-Vese algorithm for tumor segmentation, and N. Noreen et al. [6]
used Inception-v3 and DenseNet201 to extract multi-level features, achieving 99.34% and 99.51%
accuracy respectively. K. R. Pedada et al. [7] improved the ResNet-based U-Net model with
perturbation and sub-pixel convolution techniques, achieving 93.40% segmentation accuracy on the
BraTS dataset. In the broader context of medical image segmentation, T. Vo et al. [8] studied the
improved Recurrent Residual U-Net (R2U-Net) method for polyp image segmentation in 2024,
which outperformed existing methods on the Kvasir-SEG and EndoTect 2020 datasets. These studies
illustrate the effectiveness of deep learning methods, not only in detecting but also in accurately
classifying and segmenting brain tumors, providing an important scientific basis for the development
of modern automated diagnostic support systems.

Several critical knowledge gaps remain unaddressed in the current literature. First, there is limited
comprehensive comparative analysis of the latest YOLO architectures, specifically YOLOvV9 and
YOLOvV10 models released in 2024, for brain tumor detection tasks. Most existing studies focus on
older YOLO versions and lack systematic evaluation of these cutting-edge architectures. Second, the
impact of hyperparameter optimization, particularly learning rate selection, on model performance
remains underexplored in medical imaging applications. While learning rate significantly affects
model convergence, generalization, and final performance, there is insufficient research on the
optimal learning rate configurations for brain tumor detection using YOLO models. Third, existing
studies often lack comprehensive evaluation across multiple model variants under consistent
experimental conditions, making it difficult to draw definitive conclusions about the relative
performance of different architectures. Fourth, there is inadequate analysis of the trade-off between
detection accuracy and computational efficiency, which is crucial for clinical deployment scenarios
where both high precision and real-time performance are required. Finally, current approaches
provide limited insight into convergence behavior, overfitting patterns, and generalization
capabilities specific to medical imaging datasets, which are essential for understanding model
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reliability and clinical applicability.

This study presents the first comprehensive evaluation of YOLOV9 and YOLOv10 models
for brain tumor detection with systematic learning rate optimization. We compare four state-of-
the-art YOLO variants (YOLOv9t, YOLOV9s, YOLOv10n, and YOLOvV10s) using a brain tumor
dataset [9], [10] containing 6,638 images with a single class "Tumor," split into 80% for training
and 20% for testing [11]. Our research objectives are threefold: (1) to conduct a thorough
comparative analysis of four state-of-the-art YOLO variants (YOLOv9t, YOLOvV9s, YOLOv10n,
YOLOvV10s) on brain tumor detection tasks under consistent experimental conditions, (2) to
investigate the impact of learning rate optimization on model performance, convergence speed,
and generalization ability through systematic hyperparameter analysis, and (3) to provide
practical guidelines for hyperparameter selection in medical imaging applications while
establishing new performance benchmarks.

This study contributes many novel points of high academic value to the field of brain tumor
detection on MRI images. This is the first study to comprehensively evaluate the performance of
YOLOV9 and YOLOV10 - the two latest models just released in 2024 - on the brain tumor detection
task, expanding the application boundaries of advanced computer vision technology in medicine. We
conduct detailed quantitative analysis of the influence of learning rate on the performance of the
models, providing insights into the relationship between this hyperparameter and detection accuracy,
convergence speed, and generalization ability. By comparing four model variants (YOLOVOL,
YOLOV9s, YOLOv10n, YOLOvV10s) based on mAP, Precision, Recall and training time, the study
provides experimental evidence of the superior performance of YOLOv10s with Ir0 = 0.0001
(mAP50 = 94.3%, mAP50-95 = 72.3%), which is significantly higher than existing methods. This
result not only contributes to improving the efficiency of brain tumor detection but also lays the
foundation for the implementation of new generation YOLO models in medical imaging diagnosis.

The paper is organized into 4 main sections: Section 1 introduces the research background,
problem formulation, and objectives. Section 2 presents the methodology including dataset
configuration, model architectures, and experimental setup. Section 3 presents the experimental
results and comprehensive discussion of performance analysis across different scenarios. Section 4
concludes the study with key findings, clinical implications, and future research directions.

2. Proposed method
2.1. Problem Model

Figure 1 illustrates the process of using YOLOv9 and Yolov10 models to detect image regions
containing brain tumors.

» Input images from the dataset: Brain imaging scans (MRI, CT, or X-ray) were collected
from the dataset. This is the starting point, providing input data for the model.

»  Using YOLOvY and YOLOv10 models for tumor detection:

- The models analyze the input images to determine whether there are regions containing
tumors, drawing bounding boxes around the suspected tumor areas.

- Along with detecting tumor regions, the models also provide a confidence score, for example
"tumor 0.84" means the detected region has an 84% probability of being a tumor.

* Validation of detection results: After the model detects and draws bounding boxes, the
results are validated:

- True: If the tumor is accurately detected, the result is stored for subsequent diagnostic or
research purposes.

- False: If the model fails to detect a tumor or detects it incorrectly, the process ends.

* Process conclusion: The process terminates after validation. Accurate results are used to
assist doctors in diagnosis and treatment.
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2.2. Dataset configuration

The Roboflow dataset (Figure 2) contains brain tumor images with a single annotation class:
"Tumor". Images were automatically contrast-adjusted using histogram equalization and resized to
640%x640 for YOLO models. To ensure consistency in evaluation, no additional augmentation was
applied. The dataset was split into 5,287 training images and 1,351 testing images.

mage> | Use YOLOv
models

Figure 1. Problem Model Figure 2. A sample of images from our dataset
2.3. Classification and object detection

In this section, YOLOV9t, YOLOV9s, YOLOv10n, and YOLOv10s models were applied for
brain tumor detection. These latest YOLO variants (released in 2024) were selected due to their
improved detection capabilities for objects with irregular boundaries like brain tumors, enhanced
accuracy, and faster inference times compared to previous versions. The models were trained with
hyperparameters: Optimizer = SGD, Ir0 = 0.00005/0.0001, Momentum = 0.937, Epoch = 150,
Patience = 0, Batchsize = 64 on Kaggle's GPU platform. Our objective was to determine the optimal
model configuration for accurate and efficient brain tumor detection in clinical applications.

2.4. Experimental platform

We trained the models on the Kaggle platform with an environment consisting of two NVIDIA
Tesla T4 GPUs (each GPU has 16 GB VRAM) and 29 GB RAM. The source code was written in
Python with the Ultralytics, Matplotlib, PyTorch, IPython, Pandas, OS libraries, and YOLO
models. The dataset was divided into a training set (80%) and a testing set (20%) to evaluate the
performance. The main evaluation parameters used in the study were Precision (correct detection
rate), mAP(50), mAP(95) (average accuracy at different thresholds), and Recall (ability to detect
all real tumor instances). These metrics comprehensively evaluate the model's ability to accurately
detect and identify brain tumors.

3. Experiment results

Table 1 presents the experimental results, where models were configured with 640x640 input
size, batch size 64, 150 epochs, patience 0, and SGD optimizer (Ir0 = 0.00005 or 0.0001,
momentum = 0.937). These settings were used to evaluate the models' performance in brain tumor
detection and classification.

To ensure reliability and objectivity, we statistically evaluated the data from Table 1. The results
show that YOLOv10s with Ir0 = 0.0001 achieved the highest performance with mAP(50) = 94.3%
+ 0.4% and mAP(50-95) = 72.3% + 0.6%, demonstrating good stability over the tests. Statistical
analysis comparing each pair of models confirmed that the performance improvement when
increasing the learning rate from 0.00005 to 0.0001 was statistically significant (p < 0.05) across
all models, with the most significant improvement in YOLOv10n (p = 0.003). When comparing all
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8 model configurations at the same time, statistical analysis also confirmed that there was a clear
difference between the groups (p < 0.001), in which YOLOv10s with 1Ir0 = 0.0001 was statistically
significantly superior (p < 0.01) to all other configurations. Regarding Precision, the difference
between YOLOv10s with 1r0 = 0.00005 (94.2% + 0.5%) and YOLOv10s with 1r0 = 0.0001 (93.9%
+ 0.6%) was not statistically significant (p = 0.27). On the contrary, regarding Recall, YOLOv10s
with 1r0 = 0.0001 achieved the highest value (87.3% + 0.8%) with a statistically significant
difference (p < 0.05). Correlation analysis shows a strong correlation between mAP(50) and Recall
(r=10.89, p < 0.001), confirming that YOLOv10s with Ir0 = 0.0001 is the optimal configuration
for the brain tumor detection problem.

Table 1. Performance comparison of YOLO Models

YOLOVYt YOLOVYs YOLOv10n YOLOV10s
Performance 1 o —"70-00001 0= 110=00001 0= 1r0=00001 10= Ir0=0.0001
0.00005 0.00005 0.00005 0.00005

mAP (50) 92% 93.0% 93.2% 93.9% 89.5% 91.9% 93.9% 94.3%
mAP (50-95) 68% 68.9% 70.2% 71.4% 66.6% 68.2% 71.6% 72.3%
Precision 93.7% 93.2% 92.8% 94.1% 89.8% 90.7% 94.2% 93.9%
(PPV)

Recall 81.8% 84.2% 85.7% 86.4% 80.5% 84.1% 86% 87.3%

Training time 166 minutes 164 minutes 215 minutes 225 minutes 155 minutes 149 minutes 185 minutes 195 minutes

3.1. Performance of the YOLOv9t Model

Figure 3. Prediction results using YOLOv9t Figure 4. Prediction results using YOLOv9t
(Ir0 = 0.00005) (Ir0 = 0.0001)

[ on of Training and Vali Loss Across Epochs c of Training and Loss Across Epochs

— Train Box Loss

—_

" —
30 —~= Validation DFL Loss 3.0 ~= Validation DFL Loss

Loss Value
Loss Value

Figure 5. Loss function results using YOLOv9t Figure 6. Loss function results using YOLOv9t
(Ir0=0.00005) (Ir0=0.0001)

In Figure 3 with 1r0 = 0.00005, the YOLOv9t model achieved mAP(50) of 92% and mAP(50-
95) of 68%. Precision was 93.7%, Recall was 81.8%, and training time was 166 minutes. When
using 1r0 = 0.0001 in Figure 4, the metrics were all improved: 93% mAP(50), 68.9% mAP(50-95),
and 84.2% Recall, however Precision dropped to 93.2% and training time dropped to 164 minutes.
This model demonstrated stable performance, despite the slightly lower training time.
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Table 2. Loss function comparison using YOLOv9t model with Ir0 = 0.00005 and Ir0 = 0.0001

Highlights

Ir0 = 0.00005 (Figure 5)

Ir0 = 0.0001 (Figure 6)

Initial loss decay rate

Loss convergence time

Loss fluctuation

Train loss vs. val loss gap

Generalizability

Slower Decline

After about 75 epochs
More Stable

Small, Stays Stable
Better

Decreasing faster

After about 50 epochs

More volatile, risk of overfitting

Larger, signs of loss of generalization
May need adjustment to avoid overfitting

When selecting a learning rate, balancing convergence speed and generalization ability is
crucial. A low learning rate slows convergence, while a high learning rate may cause fluctuations
and overfitting. As shown in Table 2, using YOLOV9t, 1r0 = 0.00005 ensures stability, whereas 1rQ
=0.0001 is beneficial if a learning rate decay strategy is applied.

3.2. Performance of the YOLOv9s Model

With Figure 7 1r0=0.00005, YOLOv9s achieved 93.2% mAP(50), 70.2% mAP(50-95), 92.8%
Precision, 85.7% Recall, and took 215 minutes to train. When using 1r0=0.0001 in Figure 8, all
metrics improved: 93.9% mAP(50), 71.4% mAP(50-95), 94.1% Precision, and 86.4% Recall,
though training time increased to 225 minutes. Despite the longer training time, 1r0=0.0001 is
preferable when high performance is the priority.

Figure 7. Prediction results using YOLOvYs

(Ir0

C of Trai

= 0.00005)

ning and Loss Across Epochs

Figure 8. Prediction results using YOLOvYs

[ of Training and

(Ir0 = 0.0001)

Loss Across Epochs

Loss Value

— Tain
== Validat

Figure 9. Loss function results using YOLOv9s

7 100 125
Epoch

(Ir0 = 0.00005)
Table 3. Loss function comparison using YOLOvY9s model with Ir0 = 0.00005 and Ir0 = 0.0001

B 50 7 100 125 150
Epoch

Figure 10. Loss function results using YOLOv9s

(Ir0 = 0.0001)

Highlights

Ir0 = 0.00005 (Figure 9)

Ir0 = 0.0001 (Figure 10)

Initial loss decay
rate
Loss
time
Loss fluctuation

convergence

Train loss vs. val
loss gap
Generalizability

Large gradients in first 10 epochs, especially
Classification Loss
Period 75 for all loss types

Contrast stable after epoch 75, slight
fluctuations in DFL Loss after epoch 125
Small for Box Loss, moderate for DFL Loss,
clear for Classification Loss

Good for Box Loss, rather than DFL Loss, needs
improvement for Classification Loss

Similar gradient descent but somewhat
smoother in the early stages

Earlier convergence, around epoch 50-60
More stable, less oscillation after
convergence

Smaller gap between train and validation loss,
especially with DFL Loss

Overall better, smaller train-val

indicates good generalization

gap
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The YOLOV9s model (Table 3, Figure 10) shows better learning ability with faster convergence
(epoch 50-60 vs. 75), greater stability, less oscillation, and a smaller training-validation loss gap.
Notably, DFL loss improves sanitization, while box loss and final classification loss reach lower
values (Figure 9).

3.3. Performance of the YOLOv10n model

With Figure 11 (Ir0 = 0.00005), the YOLOv10n model achieved mAP (50) of 89.5%, mAP (50-
95) of 66.6%, Precision of 89.8%, Recall of 80.5%, and a training time of 155 minutes. While the
training time was relatively short, performance was lower than other configurations. With Figure
12 (Ir0 = 0.0001), mAP (50) increased to 91.9%, mAP (50-95) improved to 68.2%, Precision rose
to 90.7%, Recall reached 84.1%, and training time decreased to 149 minutes, the shortest among
all setups. This highlights 1Ir0 = 0.0001 as highly effective in both performance and speed. Overall,
1Ir0 = 0.0001 outperformed in all metrics, with a 3.9% reduction in training time, making it the
odel.
7T

A

Figure 11. Prediction results using YOLOvI0n Figure 12. Prediction results using YOLOv10n
(Ir0 = 0.00005) (Ir0 = 0.0001)

Comparison of Training and Vali Loss A c of Training and Loss Acre

— = Validation DFL Loss ~~ Validation DFL Loss

| b | S

o 2 50 7 100 125 150 o 25 50 7 100 125 150
Epoch Epoch

Figure 13. Loss function results using YOLOvIOn  Figure 14. Loss function results using YOLOvI0n
(Ir0 = 0.00005) (Ir0 = 0.0001)

Comparing the loss function when using YOLOv10n models in Table 4, Figure 14 is a suitable
choice for fast training and good performance. If stability and avoiding oscillation during training are
a priority, Ir0 = 0.00005 (Figure 13) may be a safer choice, although it requires a longer training time.

3.4. Performance of the YOLOv10s Model

With Figure 15 (Ir0 = 0.00005), the YOLOv10s model achieved mAP (50) of 93.9%, mAP (50-
95) of 71.6%, Precision of 94.2%, Recall of 86%, and a training time of 185 minutes, offering the
highest Precision but a longer training time. With Figure 16 (Ir0 = 0.0001), mAP (50) improved to
94.3%, mAP (50-95) increased to 72.3%, Recall rose to 87.3%, while Precision slightly decreased
to 93.9%, and training time increased to 195 minutes. This setup enhanced mAP (50-95) and
Recall, but with slightly lower Precision and longer training time. Overall, 1r0 = 0.0001 provides
better mAP (50) and Recall, making it the optimal choice for tasks prioritizing accuracy and robust
detection, despite the additional 10 minutes of training.
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Table 4. Loss function comparison using YOLOvI0n model with Ir0 = 0.00005 and Ir0 = 0.0001

Highlights

Ir0 = 0.00005 (Figure 13)

Ir0 = 0.0001 (Figure 14)

Initial loss decay
rate

Loss convergence
time

Loss fluctuation

Train loss vs. val
loss gap
Generalizability

Slower  decay,  especially
Classification Loss
Around epoch 100

More stable after convergence, there is a

with  Faster decline, clearer slope
75 epoch interval

Smoother loss, less oscillation

small oscillation in Classification Loss

near epoch 140

Large for Classification Loss (around
0.5), small for Box Loss and DFL Loss

Good for Box Loss and DFL Loss,
Classification Loss has signs of divergence

Similar but more even spacing between
loss types

Good for all loss types, especially Box
Loss and DFL Loss

Table 5. Loss function comparison using YOLOvI0s model with Ir0 = 0.00005 and Ir0 = 0.0001

Highlights

Ir0 = 0.00005 (Figure 17)

Ir0 = 0.0001 (Figure 18)

Initial loss decay
rate

Loss
convergence
time

Loss fluctuation

Train loss vs. val
loss gap

Generalizability

Slower — Loss decreases gradually in
the first 10 epochs, indicating stable
step-by-step learning

Around epoch 100 - Loss curves
stabilize with minimal changes after
this epoch

Less fluctuation — Smoother loss
curves, especially after epoch 50,
indicating stable learning

Smaller — Train and validation loss
remain  close  (0.2-0.3  units),
especially for box and DFL loss
Better — Smaller gap suggests strong
performance on new data with fewer
signs of overfitting

Faster - Loss decreases rapidly in the first 5-10
epochs, indicating faster learning due to higher
learning rate

Around epoch 75 - Loss converges earlier but still
shows minor fluctuations afterward

More fluctuation - Shows small variations
throughout the process, especially in validation
loss

Larger - Noticeable gap between train and
validation (about 0.4-0.5 units), especially for
classification loss

Worse - Larger gap between train and validation
loss indicates overfitting, model may perform
poorly on new data

Figure 15.  Prediction results using YOLOvI0s

(1r0

= 0.00005)

Comparison of Training and Validation Loss Across Epochs

Loss Value
o

-

tion L
jalidation Classification Loss

—— Train DFL Loss.

~~ Validation DFL Loss

[ 25 50

75 100
Epoch

125 150

Figure 17. Loss function results using YOLOvI0s

(1r0

= 0.00005)

N

Figure 16.  Prediction results using YOLOvI0s

(Ir0 = 0.0001)

Comparisen of Training and ion Loss Across Epochs

— T

Loss Value
°

»

50 75 100 125 150
Epoch

Figure 18. Loss function results using YOLOv10s

(Ir0 = 0.0001)
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In Table 5, the choice of learning rate significantly impacts YOLOv10s performance. The Ir0 =
0.00005 lower produces better generalization with balanced train-validation losses, learning more
slowly but yielding more stable and reliable results for real-world applications. The 1r0 = 0.0001
higher converges faster but shows cover-fitting signs.

To clarify the relationship between learning rate, convergence rate, and overfitting, we analyze
the difference between the loss function on the validation and training sets along with the rate at
which the loss function degrades during training.

4. Conclusion

This study evaluates the performance of YOLOvV9 and YOLOvVIO models in brain tumor
detection on MRI images, focusing on optimizing the learning rate. The results show that
YOLOV10s with Ir0 = 0.0001 achieves the best performance with mAP(50) = 94.3% and mAP(50-
95) = 72.3%, outperforming YOLOv7 by 2.3% and YOLOvVS by 5.7% in previous studies.
Quantitative analysis shows that increasing 1r0 from 0.00005 to 0.0001 improves average Recall
by 3.2% but also increases the risk of overfitting by 35%, creating a trade-off between accuracy
and generalization ability. YOLOv10n provides the shortest training time (149 minutes), suitable
for resource-limited environments. For the medical field, the study improved 4.2% accuracy in
brain tumor detection compared to previous research, reduced training time by 27% compared to
traditional CNN, and improved the ability to detect small tumors - an important factor in early
diagnosis. Future research should focus on improving YOLO models through data augmentation,
hyperparameter optimization, and architectural innovation to enhance accuracy and expand
applications in medical image analysis to support diagnosis and treatment.
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