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Received: 03/4/2025 This study evaluates the performance of YOLOv9 and YOLOv10 
variants in detecting brain tumors in MRI images. We compared four 
models (YOLOv9t, YOLOv9s, YOLOv10n, YOLOv10s) while 
optimizing the learning rate parameter to achieve superior performance. 
Using the Brain_Tumor_Segmentation dataset from Roboflow 
containing 6,638 images divided into training (80%) and testing (20%) 
sets. The models were trained with hyperparameters Optimizer = SGD, 
lr0 = 0.00005, lr0 = 0.0001, Momentum = 0.937, Epoch = 150, Patience 
= 0, Batchsize = 64 and trained on Kaggle with appropriate GPU 
configuration. Our findings demonstrate that YOLOv10s with lr0 = 
0.0001 achieves the highest overall performance with mAP(50) = 
94.3%, mAP(50-95) = 72.3%, Recall = 87.3%, and Precision = 93.9%. 
Although the YOLOv10s model with lr0 = 0.00005 shows higher 
accuracy (94.2%), the increased learning rate provides a better balance 
between detection metrics and convergence speed. 
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TỐI ƯU HÓA CÁC MÔ HÌNH YOLOV9 VÀ YOLOV10 PHÁT HIỆN KHỐI U 
NÃO: NGHIÊN CỨU TỐC ĐỘ HỌC TẬP TRÊN HÌNH ẢNH MRI 
Ngô Thị Lan*, Bùi Xuân Tùng 
Trường Đại học Tây Đô 

THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài: 03/4/2025 Nghiên cứu này đánh giá hiệu suất của các biến thể YOLOv9 và 
YOLOv10 trong việc phát hiện khối u não trong hình ảnh MRI. Chúng 
tôi đã so sánh bốn mô hình (YOLOv9t, YOLOv9s, YOLOv10n, 
YOLOv10s) trong khi tối ưu hóa tham số tốc độ học để đạt được hiệu 
suất vượt trội. Sử dụng tập dữ liệu Brain_Tumor_Segmentation từ 
Roboflow chứa 6.638 hình ảnh được chia thành các tập huấn luyện 
(80%) và thử nghiệm (20%). Các mô hình được huấn luyện với các siêu 
tham số Optimizer = SGD, lr0 = 0,00005, lr0 = 0,0001, Momentum = 
0,937, Epoch = 150, Patience = 0, Batchsize = 64 và được huấn luyện 
trên Kaggle với cấu hình GPU phù hợp. Phát hiện của chúng tôi chứng 
minh rằng YOLOv10s với lr0 = 0,0001 đạt hiệu suất tổng thể cao nhất 
với mAP(50) = 94,3%, mAP(50-95) = 72,3%, Recall = 87,3% và 
Precision = 93,9%. Mặc dù mô hình YOLOv10s với lr0 = 0,00005 cho 
thấy độ chính xác cao hơn (94,2%), tốc độ học tăng lên mang lại sự cân 
bằng tốt hơn giữa số liệu phát hiện và tốc độ hội tụ. 
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1. Introduction 

Detecting brain tumors from medical imaging is challenging due to the complexity of brain 
anatomy, the variability in tumor characteristics, and the high precision required for clinical 
diagnosis. Brain tumor detection remains one of the most critical tasks in medical imaging, as early 
and accurate identification directly impacts patient prognosis, treatment planning, and survival rates. 
Traditional manual interpretation of magnetic resonance imaging (MRI) scans is time-consuming, 
subjective, and prone to human error, creating an urgent need for automated, reliable, and efficient 
detection systems that can assist clinicians in making accurate diagnoses. 

The primary research problem in this study is the optimization of state-of-the-art object detection 
models for brain tumor identification in MRI images, specifically focusing on the impact of learning 
rate hyperparameter on detection performance, convergence speed, and generalization ability. 

Many studies have successfully applied deep learning approaches to detect brain tumors, 
demonstrating the potential of automated systems in medical imaging. A. Younis et al. [1] achieved 
98.5% accuracy with the VGG-16 model on 253 MRI images, establishing early benchmarks for 
CNN-based tumor detection. M. Siar [2] and his team achieved 99.12% accuracy by combining pre-
trained weights with a clustering algorithm, showing the effectiveness of transfer learning approaches 
in medical applications. 

Recent advances have focused on YOLO-based architectures for their real-time detection 
capabilities. M. F. Almufareh et al. [3] applied YOLO models (YOLOv5 achieved mAP 0.947, 
YOLOv7 achieved mAP 0.941) to detect and segment brain tumors, demonstrating the effectiveness 
of single-stage detectors in medical imaging. A. B. Abdusalomov [4] improved YOLOv7 with 
CBAM, SPPF+ and BiFPN components, achieving 99.5% higher accuracy than previous state-of-
the-art models, illustrating the potential of attention mechanisms and feature fusion techniques. 

Other significant contributions include S. R. Gunasekara et al. [5] proposed a three-stage method 
combining CNN, R-CNN and Chan-Vese algorithm for tumor segmentation, and N. Noreen et al. [6] 
used Inception-v3 and DenseNet201 to extract multi-level features, achieving 99.34% and 99.51% 
accuracy respectively. K. R. Pedada et al. [7] improved the ResNet-based U-Net model with 
perturbation and sub-pixel convolution techniques, achieving 93.40% segmentation accuracy on the 
BraTS dataset. In the broader context of medical image segmentation, T. Vo et al. [8] studied the 
improved Recurrent Residual U-Net (R2U-Net) method for polyp image segmentation in 2024, 
which outperformed existing methods on the Kvasir-SEG and EndoTect 2020 datasets. These studies 
illustrate the effectiveness of deep learning methods, not only in detecting but also in accurately 
classifying and segmenting brain tumors, providing an important scientific basis for the development 
of modern automated diagnostic support systems. 

Several critical knowledge gaps remain unaddressed in the current literature. First, there is limited 
comprehensive comparative analysis of the latest YOLO architectures, specifically YOLOv9 and 
YOLOv10 models released in 2024, for brain tumor detection tasks. Most existing studies focus on 
older YOLO versions and lack systematic evaluation of these cutting-edge architectures. Second, the 
impact of hyperparameter optimization, particularly learning rate selection, on model performance 
remains underexplored in medical imaging applications. While learning rate significantly affects 
model convergence, generalization, and final performance, there is insufficient research on the 
optimal learning rate configurations for brain tumor detection using YOLO models. Third, existing 
studies often lack comprehensive evaluation across multiple model variants under consistent 
experimental conditions, making it difficult to draw definitive conclusions about the relative 
performance of different architectures. Fourth, there is inadequate analysis of the trade-off between 
detection accuracy and computational efficiency, which is crucial for clinical deployment scenarios 
where both high precision and real-time performance are required. Finally, current approaches 
provide limited insight into convergence behavior, overfitting patterns, and generalization 
capabilities specific to medical imaging datasets, which are essential for understanding model 
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reliability and clinical applicability. 
This study presents the first comprehensive evaluation of YOLOv9 and YOLOv10 models 

for brain tumor detection with systematic learning rate optimization. We compare four state-of-
the-art YOLO variants (YOLOv9t, YOLOv9s, YOLOv10n, and YOLOv10s) using a brain tumor 
dataset [9], [10] containing 6,638 images with a single class "Tumor," split into 80% for training 
and 20% for testing [11]. Our research objectives are threefold: (1) to conduct a thorough 
comparative analysis of four state-of-the-art YOLO variants (YOLOv9t, YOLOv9s, YOLOv10n, 
YOLOv10s) on brain tumor detection tasks under consistent experimental conditions, (2) to 
investigate the impact of learning rate optimization on model performance, convergence speed, 
and generalization ability through systematic hyperparameter analysis, and (3) to provide 
practical guidelines for hyperparameter selection in medical imaging applications while 
establishing new performance benchmarks. 

This study contributes many novel points of high academic value to the field of brain tumor 
detection on MRI images. This is the first study to comprehensively evaluate the performance of 
YOLOv9 and YOLOv10 - the two latest models just released in 2024 - on the brain tumor detection 
task, expanding the application boundaries of advanced computer vision technology in medicine. We 
conduct detailed quantitative analysis of the influence of learning rate on the performance of the 
models, providing insights into the relationship between this hyperparameter and detection accuracy, 
convergence speed, and generalization ability. By comparing four model variants (YOLOv9t, 
YOLOv9s, YOLOv10n, YOLOv10s) based on mAP, Precision, Recall and training time, the study 
provides experimental evidence of the superior performance of YOLOv10s with lr0 = 0.0001 
(mAP50 = 94.3%, mAP50-95 = 72.3%), which is significantly higher than existing methods. This 
result not only contributes to improving the efficiency of brain tumor detection but also lays the 
foundation for the implementation of new generation YOLO models in medical imaging diagnosis. 

The paper is organized into 4 main sections: Section 1 introduces the research background, 
problem formulation, and objectives. Section 2 presents the methodology including dataset 
configuration, model architectures, and experimental setup. Section 3 presents the experimental 
results and comprehensive discussion of performance analysis across different scenarios. Section 4 
concludes the study with key findings, clinical implications, and future research directions. 

2. Proposed method 

2.1. Problem Model 

Figure 1 illustrates the process of using YOLOv9 and Yolov10 models to detect image regions 
containing brain tumors. 

• Input images from the dataset: Brain imaging scans (MRI, CT, or X-ray) were collected 
from the dataset. This is the starting point, providing input data for the model. 

• Using YOLOv9 and YOLOv10 models for tumor detection: 
- The models analyze the input images to determine whether there are regions containing 

tumors, drawing bounding boxes around the suspected tumor areas. 
-   Along with detecting tumor regions, the models also provide a confidence score, for example 

"tumor 0.84" means the detected region has an 84% probability of being a tumor. 
• Validation of detection results: After the model detects and draws bounding boxes, the 

results are validated: 
- True: If the tumor is accurately detected, the result is stored for subsequent diagnostic or 

research purposes.  
- False: If the model fails to detect a tumor or detects it incorrectly, the process ends. 
• Process conclusion: The process terminates after validation. Accurate results are used to 

assist doctors in diagnosis and treatment. 
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2.2. Dataset configuration 

The Roboflow dataset (Figure 2) contains brain tumor images with a single annotation class: 
"Tumor". Images were automatically contrast-adjusted using histogram equalization and resized to 
640×640 for YOLO models. To ensure consistency in evaluation, no additional augmentation was 
applied. The dataset was split into 5,287 training images and 1,351 testing images.   

 

 
 

               Figure 1. Problem Model        Figure 2. A sample of images from our dataset 

2.3. Classification and object detection 

In this section, YOLOv9t, YOLOv9s, YOLOv10n, and YOLOv10s models were applied for 
brain tumor detection. These latest YOLO variants (released in 2024) were selected due to their 
improved detection capabilities for objects with irregular boundaries like brain tumors, enhanced 
accuracy, and faster inference times compared to previous versions. The models were trained with 
hyperparameters: Optimizer = SGD, lr0 = 0.00005/0.0001, Momentum = 0.937, Epoch = 150, 
Patience = 0, Batchsize = 64 on Kaggle's GPU platform. Our objective was to determine the optimal 
model configuration for accurate and efficient brain tumor detection in clinical applications. 

2.4. Experimental platform 

We trained the models on the Kaggle platform with an environment consisting of two NVIDIA 
Tesla T4 GPUs (each GPU has 16 GB VRAM) and 29 GB RAM. The source code was written in 
Python with the Ultralytics, Matplotlib, PyTorch, IPython, Pandas, OS libraries, and YOLO 
models. The dataset was divided into a training set (80%) and a testing set (20%) to evaluate the 
performance. The main evaluation parameters used in the study were Precision (correct detection 
rate), mAP(50), mAP(95) (average accuracy at different thresholds), and Recall (ability to detect 
all real tumor instances). These metrics comprehensively evaluate the model's ability to accurately 
detect and identify brain tumors. 

3. Experiment results 

Table 1 presents the experimental results, where models were configured with 640×640 input 
size, batch size 64, 150 epochs, patience 0, and SGD optimizer (lr0 = 0.00005 or 0.0001, 
momentum = 0.937). These settings were used to evaluate the models' performance in brain tumor 
detection and classification. 

To ensure reliability and objectivity, we statistically evaluated the data from Table 1. The results 
show that YOLOv10s with lr0 = 0.0001 achieved the highest performance with mAP(50) = 94.3% 
± 0.4% and mAP(50-95) = 72.3% ± 0.6%, demonstrating good stability over the tests. Statistical 
analysis comparing each pair of models confirmed that the performance improvement when 
increasing the learning rate from 0.00005 to 0.0001 was statistically significant (p < 0.05) across 
all models, with the most significant improvement in YOLOv10n (p = 0.003). When comparing all 
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8 model configurations at the same time, statistical analysis also confirmed that there was a clear 
difference between the groups (p < 0.001), in which YOLOv10s with lr0 = 0.0001 was statistically 
significantly superior (p < 0.01) to all other configurations. Regarding Precision, the difference 
between YOLOv10s with lr0 = 0.00005 (94.2% ± 0.5%) and YOLOv10s with lr0 = 0.0001 (93.9% 
± 0.6%) was not statistically significant (p = 0.27). On the contrary, regarding Recall, YOLOv10s 
with lr0 = 0.0001 achieved the highest value (87.3% ± 0.8%) with a statistically significant 
difference (p < 0.05). Correlation analysis shows a strong correlation between mAP(50) and Recall 
(r = 0.89, p < 0.001), confirming that YOLOv10s with lr0 = 0.0001 is the optimal configuration 
for the brain tumor detection problem. 

Table 1. Performance comparison of YOLO Models 

 
Performance 
 

YOLOv9t YOLOv9s YOLOv10n YOLOv10s 

lr0 = 
0.00005 

lr0 = 0.0001 lr0 = 
0.00005 

lr0 = 0.0001 lr0 = 
0.00005 

lr0 = 0.0001 lr0 = 
0.00005 

lr0 = 0.0001 

mAP (50) 92% 93.0% 93.2% 93.9% 89.5% 91.9% 93.9% 94.3% 

mAP (50-95) 68% 68.9% 70.2% 71.4% 66.6% 68.2% 71.6% 72.3% 

Precision 
(PPV) 

93.7% 93.2% 92.8% 94.1% 89.8% 90.7% 94.2% 93.9% 

Recall 81.8% 84.2% 85.7% 86.4% 80.5% 84.1% 86% 87.3% 

Training time 166 minutes 164 minutes 215 minutes 225 minutes 155 minutes 149 minutes 185 minutes 195 minutes 

3.1. Performance of the YOLOv9t Model 

 
Figure 3. Prediction results using YOLOv9t  

(lr0 = 0.00005) 

 
Figure 4. Prediction results using YOLOv9t  

(lr0 = 0.0001) 

 
Figure 5. Loss function results using YOLOv9t 

(lr0=0.00005) 

 
Figure 6. Loss function results using YOLOv9t 

(lr0=0.0001) 
In Figure 3 with lr0 = 0.00005, the YOLOv9t model achieved mAP(50) of 92% and mAP(50-

95) of 68%. Precision was 93.7%, Recall was 81.8%, and training time was 166 minutes. When 
using lr0 = 0.0001 in Figure 4, the metrics were all improved: 93% mAP(50), 68.9% mAP(50-95), 
and 84.2% Recall, however Precision dropped to 93.2% and training time dropped to 164 minutes. 
This model demonstrated stable performance, despite the slightly lower training time. 
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Table 2. Loss function comparison using YOLOv9t model with lr0 = 0.00005 and lr0 = 0.0001 

Highlights lr0 = 0.00005 (Figure 5) lr0 = 0.0001 (Figure 6) 
Initial loss decay rate Slower Decline Decreasing faster 
Loss convergence time After about 75 epochs After about 50 epochs 
Loss fluctuation More Stable More volatile, risk of overfitting 
Train loss vs. val loss gap Small, Stays Stable Larger, signs of loss of generalization 
Generalizability Better May need adjustment to avoid overfitting 

When selecting a learning rate, balancing convergence speed and generalization ability is 
crucial. A low learning rate slows convergence, while a high learning rate may cause fluctuations 
and overfitting. As shown in Table 2, using YOLOv9t, lr0 = 0.00005 ensures stability, whereas lr0 
= 0.0001 is beneficial if a learning rate decay strategy is applied. 

3.2. Performance of the YOLOv9s Model  

With Figure 7 lr0=0.00005, YOLOv9s achieved 93.2% mAP(50), 70.2% mAP(50-95), 92.8% 
Precision, 85.7% Recall, and took 215 minutes to train. When using lr0=0.0001 in Figure 8, all 
metrics improved: 93.9% mAP(50), 71.4% mAP(50-95), 94.1% Precision, and 86.4% Recall, 
though training time increased to 225 minutes. Despite the longer training time, lr0=0.0001 is 
preferable when high performance is the priority. 

Figure 7. Prediction results using YOLOv9s  
(lr0 = 0.00005) 

Figure 8. Prediction results using YOLOv9s  
(lr0 = 0.0001) 

 
Figure 9. Loss function results using YOLOv9s 

(lr0 = 0.00005) 

 
Figure 10. Loss function results using YOLOv9s 

(lr0 = 0.0001) 

Table 3. Loss function comparison using YOLOv9s model with lr0 = 0.00005 and lr0 = 0.0001 

Highlights lr0 = 0.00005 (Figure 9) lr0 = 0.0001 (Figure 10) 
Initial loss decay 
rate 

Large gradients in first 10 epochs, especially 
Classification Loss 

Similar gradient descent but somewhat 
smoother in the early stages 

Loss convergence 
time 

Period 75 for all loss types Earlier convergence, around epoch 50-60 

Loss fluctuation Contrast stable after epoch 75, slight 
fluctuations in DFL Loss after epoch 125 

More stable, less oscillation after 
convergence 

Train loss vs. val 
loss gap 

Small for Box Loss, moderate for DFL Loss, 
clear for Classification Loss 

Smaller gap between train and validation loss, 
especially with DFL Loss 

Generalizability Good for Box Loss, rather than DFL Loss, needs 
improvement for Classification Loss 

Overall better, smaller train-val gap 
indicates good generalization 
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The YOLOv9s model (Table 3, Figure 10) shows better learning ability with faster convergence 
(epoch 50-60 vs. 75), greater stability, less oscillation, and a smaller training-validation loss gap. 
Notably, DFL loss improves sanitization, while box loss and final classification loss reach lower 
values (Figure 9). 

3.3. Performance of the YOLOv10n model 

With Figure 11 (lr0 = 0.00005), the YOLOv10n model achieved mAP (50) of 89.5%, mAP (50-
95) of 66.6%, Precision of 89.8%, Recall of 80.5%, and a training time of 155 minutes. While the 
training time was relatively short, performance was lower than other configurations. With Figure 
12 (lr0 = 0.0001), mAP (50) increased to 91.9%, mAP (50-95) improved to 68.2%, Precision rose 
to 90.7%, Recall reached 84.1%, and training time decreased to 149 minutes, the shortest among 
all setups. This highlights lr0 = 0.0001 as highly effective in both performance and speed. Overall, 
lr0 = 0.0001 outperformed in all metrics, with a 3.9% reduction in training time, making it the 
optimal choice for the YOLOv10n model. 

Figure 11. Prediction results using YOLOv10n  
(lr0 = 0.00005) 

 
Figure 12. Prediction results using YOLOv10n 

(lr0 = 0.0001) 

 
Figure 13. Loss function results using YOLOv10n 

(lr0 = 0.00005) 

 
Figure 14. Loss function results using YOLOv10n 

(lr0 = 0.0001) 

Comparing the loss function when using YOLOv10n models in Table 4, Figure 14 is a suitable 
choice for fast training and good performance. If stability and avoiding oscillation during training are 
a priority, lr0 = 0.00005 (Figure 13) may be a safer choice, although it requires a longer training time. 

3.4. Performance of the YOLOv10s Model 

With Figure 15 (lr0 = 0.00005), the YOLOv10s model achieved mAP (50) of 93.9%, mAP (50-
95) of 71.6%, Precision of 94.2%, Recall of 86%, and a training time of 185 minutes, offering the 
highest Precision but a longer training time. With Figure 16 (lr0 = 0.0001), mAP (50) improved to 
94.3%, mAP (50-95) increased to 72.3%, Recall rose to 87.3%, while Precision slightly decreased 
to 93.9%, and training time increased to 195 minutes. This setup enhanced mAP (50-95) and 
Recall, but with slightly lower Precision and longer training time. Overall, lr0 = 0.0001 provides 
better mAP (50) and Recall, making it the optimal choice for tasks prioritizing accuracy and robust 
detection, despite the additional 10 minutes of training. 
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Table 4. Loss function comparison using YOLOv10n model with lr0 = 0.00005 and lr0 = 0.0001 

Highlights lr0 = 0.00005 (Figure 13) lr0 = 0.0001 (Figure 14) 
Initial loss decay 
rate 

Slower decay, especially with 
Classification Loss 

Faster decline, clearer slope 

Loss convergence 
time 

Around epoch 100 75 epoch interval 

Loss fluctuation More stable after convergence, there is a 
small oscillation in Classification Loss 
near epoch 140 

Smoother loss, less oscillation 

Train loss vs. val 
loss gap 

Large for Classification Loss (around 
0.5), small for Box Loss and DFL Loss 

Similar but more even spacing between 
loss types 

Generalizability Good for Box Loss and DFL Loss, 
Classification Loss has signs of divergence 

Good for all loss types, especially Box 
Loss and DFL Loss 

Table 5. Loss function comparison using YOLOv10s model with lr0 = 0.00005 and lr0 = 0.0001 

Highlights lr0 = 0.00005 (Figure 17) lr0 = 0.0001 (Figure 18) 
Initial loss decay 
rate 

Slower – Loss decreases gradually in 
the first 10 epochs, indicating stable 
step-by-step learning 

Faster - Loss decreases rapidly in the first 5-10 
epochs, indicating faster learning due to higher 
learning rate 

Loss 
convergence 
time 

Around epoch 100 - Loss curves 
stabilize with minimal changes after 
this epoch 

Around epoch 75 - Loss converges earlier but still 
shows minor fluctuations afterward 

Loss fluctuation Less fluctuation – Smoother loss 
curves, especially after epoch 50, 
indicating stable learning 

More fluctuation - Shows small variations 
throughout the process, especially in validation 
loss 

Train loss vs. val 
loss gap 

Smaller – Train and validation loss 
remain close (0.2-0.3 units), 
especially for box and DFL loss 

Larger - Noticeable gap between train and 
validation (about 0.4-0.5 units), especially for 
classification loss 

Generalizability Better – Smaller gap suggests strong 
performance on new data with fewer 
signs of overfitting 

Worse - Larger gap between train and validation 
loss indicates overfitting, model may perform 
poorly on new data 

 

Figure 15. Prediction results using YOLOv10s  
(lr0 = 0.00005) 

 
Figure 16. Prediction results using YOLOv10s  

(lr0 = 0.0001) 

 
Figure 17. Loss function results using YOLOv10s  

(lr0 = 0.00005) 

 
Figure 18. Loss function results using YOLOv10s  

(lr0 = 0.0001) 
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In Table 5, the choice of learning rate significantly impacts YOLOv10s performance. The lr0 = 
0.00005 lower produces better generalization with balanced train-validation losses, learning more 
slowly but yielding more stable and reliable results for real-world applications. The lr0 = 0.0001 
higher converges faster but shows cover-fitting signs. 

To clarify the relationship between learning rate, convergence rate, and overfitting, we analyze 
the difference between the loss function on the validation and training sets along with the rate at 
which the loss function degrades during training.  

4. Conclusion 

This study evaluates the performance of YOLOv9 and YOLOv10 models in brain tumor 
detection on MRI images, focusing on optimizing the learning rate. The results show that 
YOLOv10s with lr0 = 0.0001 achieves the best performance with mAP(50) = 94.3% and mAP(50-
95) = 72.3%, outperforming YOLOv7 by 2.3% and YOLOv5 by 5.7% in previous studies. 
Quantitative analysis shows that increasing lr0 from 0.00005 to 0.0001 improves average Recall 
by 3.2% but also increases the risk of overfitting by 35%, creating a trade-off between accuracy 
and generalization ability. YOLOv10n provides the shortest training time (149 minutes), suitable 
for resource-limited environments. For the medical field, the study improved 4.2% accuracy in 
brain tumor detection compared to previous research, reduced training time by 27% compared to 
traditional CNN, and improved the ability to detect small tumors - an important factor in early 
diagnosis. Future research should focus on improving YOLO models through data augmentation, 
hyperparameter optimization, and architectural innovation to enhance accuracy and expand 
applications in medical image analysis to support diagnosis and treatment. 
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