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Vietnamese sign language plays a pivotal role in enabling effective
communication among deaf and hard-of-hearing communities
throughout Vietnam. In this study, we propose a deep learning-based
recognition system that leverages MediaPipe to accurately extract hand
landmarks from video sequences. These landmarks are then processed
by an architecture, either a convolutional neural network or a long
short-term memory network enhanced with an attention mechanism
(such as additive or multi-head attention), to selectively highlight
salient temporal patterns in sign gestures. To support robust training
and evaluation, we compiled and meticulously annotated a
comprehensive dataset of Vietnamese sign language gestures.
Experimental results demonstrate that the proposed model attains a
remarkable recognition accuracy of 99.51%, outperforming baseline
approaches. The system’s real-time performance and high precision
highlight its potential as the basis for practical assistive communication
tools, paving the way for further research in sign language processing
and cross-cultural gesture recognition applications within the
Vietnamese context.
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Ngon ngit ki hi€u Viét Nam
Mang tich chap

Mang bd nhé ngin-dai han
Co ché chi y

Thi giac may tinh

Ngoén ngir ky hi¢u Viét Nam dong vai tro thiet yéu trong viéc tao di€u
kién giao tiép hiéu qua cho cong dong ngudi diéc va khiém thinh trén
khép lanh thé Viét Nam. Trong nghién ctru ny, ching t6i dé xuat mot hé
théng nhén dang dya trén hoc sau, tdn dung thu vién MediaPipe dé trich
xuét chinh x4c céc diém méc ban tay tir chudi phim. Cac diém méc nay
sau d6 duge dua vao mot kién truc mang no-ron, co thé 1a mang no-ron
tich chap hodc mang no-ron véi by nhd nga“in han-dai han dugc trang bi
co ché chu ¥ (bao gom chii ¥ gia tinh hodic cht ¥ da dAu) nham tip trung
chon loc cac miu thoi gian ndi bat trong cac cur chi ky hiéu. Dé hd tro qua
trinh huén luyén va danh gia do chinh xac, chung t6i da bién soan va chu
thich ti mi mot tap dir liu diy du vé cac dong tac ky hiéu Viét Nam. Két
qua thuc nghiém cho théy mé hinh dé xuét dat d6 chinh xac 1én t6i
99,51%, vugt trdi so voi cac phuong phap co so. Kha nang van hanh theo
thoi gian thyc cing d6 chinh x4c cao cua hé théng nhdn manh tiém ning
mg dung trong cic cong cu tro gitp giao tiép, dong thdi mé ra hudng
nghién ctru sau hon vé xir Iy ngdn ngit ky hiéu va tng dung nhan dang cir
chi da van hoa trong béi canh Viét Nam.
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1. Introduction

The rapid evolution of deep learning has significantly advanced sign language recognition,
enabling more effective communication tools for the deaf community. Recent research has
demonstrated the effectiveness of integrating computer vision frameworks such as MediaPipe [1]
with a convolutional neural network (CNN) to achieve high recognition accuracies for hand sign
images, as evidenced by Kumar et al. [2], who reported accuracies exceeding 90% for American
sign language (ASL) gestures. This success underscores the potential of deep neural networks in
addressing the complexities of hand sign recognition tasks across various sign languages.

In parallel, skeleton-based deep learning approaches have gained traction for their efficiency in
modeling human pose using sparse keypoint landmarks rather than dense pixel arrays. Yan et al. [3]
introduced spatial-temporal graph convolutional networks (ST-GCN), which treats human joints as
graph nodes connected both spatially and temporally, yielding state-of-the-art performance on
standard action recognition benchmarks. Shi et al. [4] further proposed the two-stream adaptive
graph convolutional network (2s-AGCN), which learns graph topologies end-to-end and
incorporates both joint and bone information for enhanced accuracy. In the sign language domain,
C. C. De Amorim et al. [5] applied ST-GCN to full-body skeleton sequences for isolated sign
recognition, achieving 85% accuracy on the American Sign Language Lexicon Video Dataset.

Despite these advancements, Vietnamese sign language (VSL) presents unique challenges that
distinguish it from other sign languages. Unlike systems that map static hand gestures directly to
letters or words, VSL incorporates both characters and tone marks. For example, characters such
as "0" and "¢&" are formed by combining a base hand gesture representing the vowel with an
additional gesture representing the diacritical hat [6]. Consequently, the recognition of VSL
cannot rely solely on single-frame image analysis; it requires an understanding of the entire
sequence of hand movements to interpret the intended signs accurately.

In this paper, we propose a deep neural network-based approach that integrates MediaPipe for
landmark extraction with a bi-directional long short-term memory (Bi-LSTM) network
incorporating an attention mechanism for temporal sequence modeling in VSL recognition. Our
method leverages MediaPipe to accurately capture detailed spatial landmarks, while the Bi-LSTM,
building upon the foundational work on Long Short-Term Memory networks [7] and bidirectional
recurrent neural networks [8], processes the dynamic temporal evolution of the signing process.
Furthermore, the attention mechanism, inspired by advancements in neural machine translation [9]
and the transformer model [10], allows the model to focus on critical transitions and pivotal frames,
thereby enhancing its ability to discern isolated gestures and interpret complete signing sequences.
This holistic framework addresses the contextual ambiguities inherent in VSL, where the meaning
of a gesture can vary significantly depending on its sequence context. Ultimately, our approach not
only advances deep learning applications in sign language recognition but also provides a versatile
framework that can be adapted to other sign languages.

2. Proposed methodology
2.1. Proposed architecture of the model

We propose the following methodology for hand sign recognition, as illustrated in Figure 1:

- Frame extraction: Decompose the input video into individual frames.

- Landmark detection: Utilize MediaPipe to extract 21 landmarks for the left hand and 21
landmarks for the right hand, totaling 42 landmarks in each frame.

- VSL classification: Input the sequence of hand landmarks into a deep learning neural
network to classify the gestures into corresponding hand sign language representations.

Gesture classification is performed using four distinct models for comparative analysis: a 1D
convolutional neural network (named as CNN-1D), a standard bidirectional long short-term
memory (named as Bi-LSTM-Hand) network, a Bi-LSTM enhanced with additive attention
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mechanism (referred to as Bi-LSTM-Att-14), and a Bi-LSTM integrated with multi-head

attention mechanism (referred to as Bi-LSTM-Att-17).

Frame Extraction
Decompose videos into frames

v
Landmark Detection
Extracts 42 hand landmarks per frame

v

VSL classification
Classify VSL via neural networks

Figure 1. Proposed method for VSL recognition
Figure 2 illustrates the architecture of the Bi-LSTM model integrated with the attention
mechanism, which achieved the highest accuracy among the models evaluated.
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Figure 2. Bi-LSTM with attention architecture

Figure 2 illustrates the architecture diagram; the batch size dimension is omitted for clarity.
The input sequence consists of vectors Xi, Xz, ..., X,, each being a one-dimensional vector of
length 126, corresponding to 42 hand landmarks with 3 coordinates each. These vectors are
processed through two Bi-LSTM layers. The output from the last Bi-LSTM layer is a sequence of
vectors 71, T, ..., T’», representing the time steps. This output is then fed into an attention layer
(additive or multi-head). The attention mechanism produces a single vector, which is then passed
through two linear layers. Following the attention and fully-connected layers, batch
normalization, ReLU activation, and dropout are applied to the output vector.
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2.2. MediaPipe

MediaPipe is an open-source, cross-platform framework developed by Google for
constructing perception pipelines. It offers pre-trained solutions for real-time video analysis and
incorporates state-of-the-art models for various tasks, including face, hand, and pose tracking. In
this study, MediaPipe is utilized to extract spatial landmarks from input video data. Specifically,
each video is processed frame-by-frame, resulting in the extraction of 42 key landmarks per
frame, with each landmark encoded as a three-dimensional coordinate (x, y, z). This automated
landmark extraction provides a robust and consistent feature representation for downstream deep
learning models. Figure 3 illustrates a sample output generated by MediaPipe.

Figure 3. Landmark extraction using MediaPipe, with 21 landmarks for the left hand
2.3. CNN

To effectively capture the temporal dynamics inherent in Vietnamese sign language gestures,
we developed a CNN that processes sequences of hand landmarks extracted using MediaPipe.
Each time step in the sequence is represented by a 126-dimensional vector, corresponding to 42
hand landmarks with three coordinates each.

2.4. Bi-LSTM

LSTM networks were originally introduced by Hochreiter and Schmidhuber [7] to address the
vanishing gradient problem encountered in traditional recurrent neural networks. They achieve
this by maintaining a memory cell that selectively retains information over long sequences. Bi-
LSTM extends the conventional LSTM by processing the input sequence in both forward and
backward directions, and then concatenating the outputs at each time step. This dual approach,
first popularized by Schuster and Paliwal [8], allows the network to capture context from both
past and future time steps. Such an arrangement is particularly advantageous for our application,
as it helps in understanding the full temporal context of each gesture sequence.

2.5. Additive attention

While Bi-LSTM effectively models temporal dependencies, it treats each time step with equal
importance. To allow the model to focus on the most relevant parts of the sequence, we
incorporate additive attention introduced by Bahdanau et al. [9]. This attention mechanism
computes a weighted sum of the hidden states across time steps. By assigning higher weights to
more informative frames, the model can emphasize critical features that are most indicative of a

given gesture. Figure 4 illustrates the architecture of the Bidirectional model augmented with
additive attention.
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Figure 4. Additive Attention as proposed in [9]
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2.6. Multi-head attention

To further refine the model’s focus on different aspects of the sequence, we also experiment
with multi-head attention based on Vaswani et al. [10]. Multi-head attention extends the
conventional attention mechanism by allowing the model to jointly attend to information from
different representation subspaces at various positions. This is achieved by running multiple
attention operations in parallel (referred to as "heads"). Figure 5 illustrates this process, in which
multiple attention heads, each using Scaled Dot-Product Attention, independently compute
weighted representations. These outputs are then concatenated and passed through a linear
transformation to yield the final attention output.

(@ (%)
MatMul
Scaled Dot-Product r
* Attention L
] I fl

Linear P{ Linear Pr| Linear
Q K \
\ K Q

Figure 5. (a) Scaled dot-product attention; (b) Multi-head attention as proposed in [10]

We obtain a single attention vector from multi-head attention by applying a pooling layer
along the first dimension, excluding the batch dimension.

3. Experimental data and results
3.1. Experimental data

Our self-constructed dataset includes recordings of 29 Vietnamese characters, supplemented
by five tonal diacritics ('sac', 'huyén', 'hdi', 'ngd', and 'nang'), as illustrated in Figure 6. The
recordings vary in length from 1 to 5 seconds, with the majority lasting around 1.5 seconds.
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Figure 6. Vietnamese alphabet based on [6]

Following processing with MediaPipe to extract hand landmarks, the dataset is structured with
an overall shape of (1055, 90, 42, 3). Here, 1055 videos consist of 90 selected frames each, where
longer videos are trimmed at the end and shorter ones are padded with zero frames, and each
frame contains 42 hand landmarks represented in 3 dimensions. The dataset was doubled through
horizontal reflection. By selecting six instances per class, the validation and test sets each have
shape (408, 90, 42, 3). To enhance the diversity and robustness of the training set, we applied
various data augmentation techniques, including spatial rotation, shifting, zooming, random
frame removal, and random frame duplication. These augmentations are applied at the start of
each training batch and serve as a regularization method, helping to prevent the model from over-
fitting to the training data.

3.2. Experimental design
3.2.1. CNN-1D

Our CNN-1D can be understood as a special case of an ST-GCN. In an ST-GCN, the 126-
dimensional joint feature vector for each frame is first processed by a graph convolution that uses
the skeleton’s adjacency, and then those outputs are convolved across frames. By contrast, our
CNN-1D treats the entire 126-dimensional vector as a single channel per time step and omits any
spatial graph convolution, applying only a temporal convolution across those vectors. In other
words, it is an ST-GCN with the spatial-convolution step removed. The architecture comprises
three convolutional blocks. The first block consists of a 1D convolution with 128 output channels
and a kernel size of 3, followed by batch normalization and ReLU activation. The second block
increases the output to 256 channels, also followed by batch normalization and ReLU activation.
The third block further expands the feature representation to 512 channels, maintaining the same
configuration. To summarize temporal information, an adaptive max pooling layer is applied
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across the time dimension, producing a fixed-length feature vector. For classification, the fully
connected head processes this vector through two linear layers, each followed by sequence batch
normalization, ReLU activation, and dropout.

3.2.2. Bi-LSTM-Hand

In our experimental setup, the Bi-LSTM layers are configured with an output dimensionality
of 256 units. Two Bi-LSTM layers with the same architecture are stacked on top of each other.
Following these, the first fully connected (Dense) layer comprises 128 neurons, leading up to the
final classification layer. Batch normalization, ReLU activation and dropout are applied after
each linear layer and attention layer.

3.2.3. Bi-LSTM-Att-14

This model is built based on the architecture shown in Figure 1. The Bi-LSTM block has the
same architecture as the Bi-LSTM-Hand model described in section 3.2.2. The classification
head includes two fully connected layers (the first one has 128 neurons, the second one has 34
neurons for classification).

3.2.4. Bi-LSTM-Att-17

This model is constructed using the same architecture as Bi-LSTM-Att-14, with the additive
attention mechanism replaced by a multi-head attention mechanism configured with four
attention heads.

3.2.5. Training

All models were trained using the Adam optimizer with an initial learning rate set to 1e-3 with
a batch size of 128. A learning rate scheduler was employed to reduce the learning rate by a
factor of 0.5 at epochs 48, 96, 144 and 192. The training process spanned 256 epochs, with the
model achieving the lowest cross-entropy loss on the validation set selected for final evaluation.

Given the imbalanced distribution of classes within the dataset, a class-aware sampling
strategy was applied. This sampling mechanism decreases the occurrence of samples from
overrepresented classes while increasing the sampling frequency of underrepresented classes,
thereby promoting more balanced learning and improving the model's generalization across all
gesture categories.

3.3. Experimental results and discussions

Table 1 presents the performance outcomes for the evaluated models: CNN-1D, Bi-LSTM-
Hand, Bi-LSTM-Att-14, and Bi-LSTM-Att-17.

Table 1. Comparisons of each model’s performance

Model Parameters Test Accuracy
CNN-1D 683170 98.53%
Bi-LSTM-Hand 695458 98.21%
Bi-LSTM-Att-14 695715 99.51%
Bi-LSTM-Att-17 959138 99.51%

All models demonstrated high accuracy, indicating effective data preprocessing and
augmentation. Notably, Bi-LSTM models with attention mechanisms outperformed others, with
Bi-LSTM-Att-17 and Bi-LSTM-Att-14 achieving the highest accuracy of 99.51%. The attention
mechanism enhances the model's focus on relevant parts of the input sequence, improving
generalization and learning outcomes. These results highlight the importance of attention-based
architectures, especially as datasets grow in size and complexity.
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4. Conclusion

In this study, we developed a deep neural network system for recognizing Vietnamese sign
language (VSL) by integrating MediaPipe for landmark extraction with a Bi-LSTM architecture
enhanced by attention mechanisms for sequence modeling. Our approach achieved high accuracy
and maintained a reasonable model size while successfully recognizing 29 Vietnamese characters
and 5 tone marks. These results demonstrate the effectiveness of combining spatial landmark
extraction with advanced sequence modeling techniques for real-time applications. Future work
will focus on expanding the dataset to encompass a broader range of gestures and on
implementing real-time recognition capabilities to further enhance communication accessibility
for the hearing-impaired community in Vietnam.
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