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The availability of affordable and user-friendly electrocardiogram
monitors has improved healthcare for patients with periodic heart
arrhythmias. However, effectively diagnosing electrocardiogram records
remains challenging, even for experienced medical professionals. This
work introduced a transfer learning-based algorithm for
electrocardiogram classification using lightweight Densely Connected
Convolutional Networks (DenseNets) integrated with Bidirectional Long
Short-Term Memory (BiLSTM). We first pre-trained our model on the
Icential IK dataset, the largest public dataset of continuous
electrocardiogram records, then fine-tuned it on the CPSC2018 dataset.
Our model demonstrated performance comparable to state-of-the-art
methods, obtaining an F; score of 0.839 without pre-training. With pre-
training, the F; score further improved to 0.849. The proposed network
structure outperformed existing methods in various metrics, including
Area Under the Curve, Fi,y, Fg—, and Gg—,. The Area Under the Curve
and Fp,; values were 0.986 and 0.886, respectively for CPSC2018
dataset.
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TU KHOA

Dién tam do

Réi loan nhip tim

Hoc chuyén giao

Mang bo nhé ngén han hai
chiéu

Mang tich chap

Su xuat hién cua cac thiet bi theo doi dién tdm do voi gia ca phai chang
va than thién v6i ngudi ding da gop phin cai thién dich vu chim soc sirc
khoe cho nhitng bénh nhan mic chung rbi loan nhip tim. Tuy nhién, viéc
chéan doan hiéu qua cac ban ghi dién tim db van la thach thic, ngay ca
v6i cac chuyén gia y t& giau kinh nghiém. Nghién ctru nay dé xuét thuat
toan phan loai dién tam dd dya trén hoc chuyén giao, st dung mang tich
chép két ndi day dac nhe Kkét hop mang bd nhd nge"ln han hai chiéu. Trugc
tién, chung toi huén luyén so bo mo hinh trén tap dir liéu Icential 1IK —
tap dit liéu cong khai 16n nhét vé céc ban ghi dién tam dd lién tuc — sau
d6 tinh chinh no trén tp dir liu CPSC2018. M6 hinh cho thiy hiéu sut
trong duong véi cac phuong phap hién dai, dat diém F, 1a 0,839 ma
khong can hudn luyén so bd. Khi dugc huén luyén so bo, diém F, tiép tuc
cai thién Ién 0,849. CAu trac mang dugc d& xuét vuot troi hon cac phuong
phap hién tai qua nhiu chi sb, bao gdm dién tich du6i dudng cong, Fyyax,
Fg_y, va Gp—,. Gia tri cua dién tich du¢i duong cong va Fp oy lan luot 1a
0,986 va 0,886 cho tap dir liéu CPSC2018.
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1. Introduction

Electrocardiogram (ECG) classification is challenging when done manually, even for experts.
Therefore, automated methods that can analyze and classify ECG signals quickly and accurately
are essential. Researchers have developed various approaches, with the most widely used being
classic machine learning (ML), deep learning (DL), and hybrid models. ML methods have shown
promise in ECG classification [1]. One study introduced a novel technique to reduce 12-lead ECG
classification to a single lead through a teacher-student model, achieving significant compression
with only a slight accuracy drop of 0.81% [2]. Another approach enhanced classification and
arrhythmia analysis through three stages: signal quality improvement, wavelet-based feature
extraction, and classification using a hidden Markov model, reaching 99.7% accuracy with high
sensitivity and predictive value [3]. DL, a subset of ML, has also delivered remarkable results by
effectively analyzing arrhythmias and cardiac abnormalities. The Depthwise Separable
Convolutional Neural Network (CNN) with Focal Loss (DSC-FL-CNN) improved performance on
imbalanced datasets, achieving a strong Fi score on the MIT-BIH (Massachusetts Institute of
Technology (MIT) and Beth Israel Hospital (BIH)) arrhythmia database [4]. Other notable DL
models including Deform-CNN [5] and DMSFNet [6] achieved high accuracy across datasets.
DenseNet architectures have also demonstrated strong performance in ECG classification, as they
efficiently extract and transmit detailed feature representations throughout the network layers [7],
[8]. Other than DL methods, Bidirectional Long Short-Term Memory (BiLSTM) models have also
demonstrated good performance by capturing temporal context from both directions. The 1B-
LSTM framework [9] achieved high accuracy in classifying atrial fibrillation (AF) signals on
public databases. Hybrid models that integrate different DL techniques have further improved
classification accuracy. For example, a CNN-LSTM hybrid [10] addressed data imbalance and
achieved high sensitivity (97.87%) and specificity (99.29%) on the MIT-BIH dataset.

In addition to method development, the use of computational techniques like transfer learning
has enhanced ECG classification by leveraging pre-trained models on large-scale datasets,
improving performance, and reducing training time on limited data [11], [12]. In this study, we
introduce a transfer learning-based model combining lightweight Dense Convolutional Networks
and BiLSTM. The model was pre-trained on an upstream dataset, then it was fine-tuned on
downstream datasets. Experiments showed that integrating a 1D dense convolutional network for
local feature extraction with a BILSTM and global max pooling for global representation yielded
the best results. Comparative analysis was conducted with other models on the downstream dataset
to evaluate the performance of our model.

2. Materials and methods

In the work [8], we introduced a compact model design derived from Densely Connected
Convolutional Networks, comprising 37 convolutional layers, referred to as DenseNet-37. It was
shown that the DenseNet-37 model had comparable performance with other models but required
less computational cost. In this study, we employed transfer learning to enhance the performance
of multi-label classification of 12-lead ECG signals. First, DenseNet-37 model was trained on the
upstream dataset (ICENTIA11K [13]) to acquire the pre-trained weights. Next, a deep learning
network based on DenseNet-37 combined with a BILSTM [14] layer was fine-tuned on the China
Physiological Signal Challenge 2018 (CPSC2018) dataset [15]. Figure 1 illustrates the flow chart
of the proposed method.

2.1. Experimental datasets

ICENTIA11K: Our model underwent pre-training on the ICENTIA11K [13] dataset,
comprising continuous raw ECG signals with a 16-bit resolution sampled at 250 Hz. This dataset,
collected using the CartioSTAT™ device, consists of 2 billion labeled beats from 11 thousand
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patients and serves as a valuable resource for beat and rhythm classification tasks through
representation learning. The dataset was annotated initially using proprietary analysis tools by
technologists of Icentia, followed by a review conducted by senior technologists.
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Figure 1. Flow chart diagram of transfer learning procedure for ECG classification
China Physiological Signal Challenge 2018 (CPSC2018): The CPSC2018 [15] dataset was
gathered from 9458 patients across 11 different hospitals, which includes 9831 standard 12-lead
ECG records with lengths ranging from 6 seconds to 60 seconds and sampled at 500 Hz. It consists
of 12-lead ECG recordings labeled with nine types of cardiac conditions. The nine types are:
Normal rhythm (NORM), Atrial fibrillation (AF), First-degree atrioventricular block (I-AVB), Left
bundle branch block (LBBB), Right bundle branch block (RBBB), Premature atrial contraction
(PAC), Premature ventricular contraction (PVC), ST-segment depression (STD), and ST-segment
elevation (STE). The training set (6877 records) of this dataset is publicly available, while the test
set remains undisclosed. Each record in the dataset can be assigned up to three labels, which include
one normal sinus rhythm and eight abnormal ECG types. Out of the 6877 recordings in the

CPSC2018 dataset, 476 recordings have two or three different labels assigned to them.

2.2.  Architecture of proposed network

In this study, we proposed a network structure to improve the multi-label 12-lead ECG
classification. Our network structure, DenseNet-BiLSTM, was built by combining the DenseNet-
37 [8] and BiLSTM [16] networks. Firstly, ECG signals were used as the input for DenseNet-37
model, which worked as the local feature learning component of the network architecture.
DenseNet-37 is a lightweight model developed with 3 dense blocks and some improvements, such
as larger kernel filters, growth rate, and the number of input channels that were also changed
compared to the original DenseNets network [8]. This model enables extracting local features and
compressing the lengthy ECG record into a more concise series of local feature vectors derived
from input segments. The feature vectors extracted from the data were then fed into the BiLSTM
[16] layer, consisting of forward and backward LSTM components, to process sequential features.
The LSTM layers captured local features from surrounding time steps, producing local-focused
global feature vectors of length 64, aligned with the number of LSTM units. These were passed
through a GMP layer to form a single global feature representation for classification. A classifier
then categorized ECG signals using these features, consisting of a dense layer with 9 cells (for the
9 classes) and a sigmoid activation layer. The dense layer performed class recognition, while the
activation layer output the probability distribution across the 9 classes.
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2.3. Experimentation details
2.3.1. Pre-processing

The signals from the CPSC2018 dataset were downsampled from 500 Hz to 250 Hz to ensure
consistency with the sampling rate of the ICENTIA11K dataset. As convolutional neural networks
require inputs of consistent length, we cropped or padded the downsampled ECG signals to a fixed
length of 30 seconds. That means the shorter signals were extended to 30 seconds by appending
zero-valued data at the beginning, while longer signals were truncated to the first 30 seconds.

2.3.2. Pre-training

Pre-training is to obtain favorable initial weights to enhance model learning. The DenseNet-37
model was pre-trained on the Icential 1K dataset, using 80% for training and 20% for validation.
Short ECG frames were sampled and standardized using the overall mean and standard deviation.
Each frame was analyzed for abnormalities; those without abnormalities were labeled as regular
beats, while frames with multiple abnormalities were labeled by the most frequent beat type. We
applied the Cyclic Learning Rate technique [17], adjusting the rate from 107® to 1072 via the
triangular2 policy. Model weights were checkpointed at each epoch, and we reverted to the
checkpoint with the lowest validation loss.

2.3.3. Fine-tuning

For fine-tuning, the CPSC2018 dataset was partitioned at random into 75% for training, 5% for
validation, and 20% for testing, with class distribution maintained across all subsets. As a multi-
label classification task, the model used a sigmoid-activated output layer and binary cross-entropy
loss. Training employed a mini-batch size of 8, considering GPU memory and trainable parameters.
CNN s were trained for up to 200 epochs with early stopping if the training F1 score did not increase
for 30 epochs. The Cyclic Learning Rate technique [17] adjusted the learning rate automatically,
and the Adam optimizer was used with default settings.

After each epoch, Fi score on the validation set was recorded. Upon completion of training, the
model was restored to the checkpoint with the highest validation macro Fi score. Output values
between 0 and 1 were considered abnormal if they exceeded a threshold, which was selected by
maximizing the Fi score on the precision-recall curve. The fine-tuning procedure was conducted
over 10 iterations, each time drawing fresh training and validation subsets at random from the 80%
training partition. The final model used for evaluation was the one whose average precision was
just above the median across all runs. This model’s macro-averaged scores were then evaluated on
the test set.

3. Results and discussion
3.1. Evaluation metrics

The effectiveness of our model was assessed using several evaluation metrics, including Area
Under the Curve (AUC), F; score, Fg, Gg. Fg and Gg were computed according to formulas (1) and
(2) respectively, with = 2. The value of 3 = 2 indicates a higher emphasis on recall compared
to precision, prioritizing the ability of the model to identify positive instances correctly.

_ (1+B2)XTP
Fg = FP+B2xFN+(1+B2)xTP M
TP
B = TP+FP+BxFN 2

Where TP and NP are True and False Positive, respectively. TN and FN are True and False
Negative, respectively.
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3.2. Performance on the downstream datasets

First, we evaluated the performance of our model against other leading architectures on the
CPSC2018 dataset considering F; score. The results were summarized in Table 1. We presented
the results for both cases, with and without pre-training. With pre-training, there was a significant
improvement in the F; score. However, without pre-training, the evaluation metrics were already
comparable to those achieved by other methods. Our proposed model achieved the highest
F; scores for 3 out of 9 types, specifically Normal, PAC, and STE. The model proposed by Li et
al. [18] attained the highest F; score for AF of 0.949. In this study, they introduced a model
structure called DSE-ResNet, designed for the automatic classification of normal rhythm and 8
cardiac arrhythmias using two-dimensional ECG data. In order to improve the classification
performance of the model, hyper-parameter optimization is performed using an orthogonal
experiment method. On the other hand, the work by Zhang et al. [19] achieved the highest average
F; score across all types. This work presented MLBF-Net, an architecture for arrhythmia
classification using multi-lead ECG data. MLBF-Net incorporated multi-loss optimization to learn
the integrity and diversity of the ECG signals jointly. The architecture consisted of lead-specific
branches, cross-lead features fusion, and multi-loss co-optimization.

Table 1. Comparison of the proposed model performance on our test set with related works for the
CPSC2018 dataset [15]. The maximal score in each column is bolded

Authors Evaluation metrics

Normal AF I-AVB LBBB RBBB PAC PVC STD STE F;
Jeong et al, [4] 0.770 0.860 0.800 0.890 0.850 0.530 0.640 0.760 0.520 0.740
Qin et al, [5] 0.805 0.931 0.893 0.900 0.948 0.663 0.871 0.800 0.667 0.831
Zhang et al, [20] 0.805 0.919 0.864 0.866 0.926 0.735 0.851 0.814 0.535 0.813
Zhang et al, [21] 0.812 0.875 0923 0.929 0.776 0.753 0.793 0.837 0.900 0.844
Zhang et al. [19] 0.847 0.934 0.884 0.896 0.939 0.822 0.878 0.818 0.677 0.855
Lietal. [18] 0.787 0.949 0.870 0.970 0.935 0.764 0.897 0.748 0.667 0.843
Hanh et al. [8] 0.824 0.900 0.834 0.718 0.867 0.732 0.834 0.809 0.912 0.826
This work
Non pre-training 0.883 0.902 0.857 0.682 0.878 0.828 0.814 0.812 0.899 0.839
Pre-training 0.886 0.922 0.821 0.685 0.889 0.830 0.852 0.823 0.932 0.849

Table 2. Comparison of our model with the others for the CPSC2018 [15] dataset using different metrics.
The maximal score in each column is bolded. ND means not determined

Authors Evaluation metrics
AUC  Fpnax  Fpg=z  Gp=

Strodthoff et al. [12] 0974 0.855 0.819 0.602
Jeong et al. [22] 0.850 ND ND ND
Qin et al. [5] 0.969 ND ND ND
Zhang et al. [20] 0.970 ND ND ND
Weimann et al. [11] 0961 0.854 0.814 0.591
Liet al. [23] 0.974 ND ND ND
Hanbh et al. [8] 0.969 0.860 0.804 0.594
This work

Non pre-training 0.985 0.881 0.823 0.628
Pre-training 0.986 0.886 0.837 0.647

Next, we analyzed the performance of our proposed model using four additional metrics: AUC,
Frax, Fg=2, Gg=2- The results, presented in Table 2, showed a better performance of our model
over all others in all four metrics, even without pre-training. Notably, pre-training did lead to
improvements in Fg—5, Gg=2, but it did not have a significant impact on AUC and Fy,, . In the
study [8], the DenseNet-37 architecture was employed as a standalone model for ECG signal
classification and yielded relatively good results compared to other models. In this work, we
utilized the DenseNet-37 architecture; however, the weights were pre-trained on the Icential 1K
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dataset before being transferred to the CPSC2018 and PTB-XL datasets. Furthermore, the output
of DenseNet-37 served as the input for the BILSTM layer, which is effective for processing time-
dependent data like ECG signals. Consequently, the DenseNet-BiLSTM model exhibited a
significant performance improvement compared to the DenseNet-37 model.

In order to assess the robustness of the model, we also conducted experiments by varying the
size of the train set while keeping the validation and test sets unchanged. The train set sizes were
50% and 25%, randomly selected from a pool comprising 75% of the original train set. As depicted
in Figure 2, the smaller train set sizes corresponded to lower evaluation metrics. However, even
with the smallest train set size of 25%, the evaluation metrics remain reasonably good, suggesting
the robustness of the proposed model.
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Figure 2. (Bootstrapped scores) Empirical distribution of AUC, Fpqy, Fg—3, Gg—y and Fy score on the test
set of the CPSC2018. Outliers are shown as black diamonds

4. Conclusion

We introduced a transfer learning-based approach to enhance the classification of multi-label
12-lead ECGs. Our proposed network combined DenseNet for local feature learning and BiLSTM
with Global Maximum Pooling for global feature learning. We pre-trained the model using the
Icential 1K dataset and fine-tuned it on the CPSC2018. The performance evaluation of our
proposed model on the CPSC2018 dataset demonstrated its good performance even without pre-
training. With pre-training, the performance of the proposed model improved slightly. Our model
achieved the highest F; score for three out of nine classes in the CPSC2018 dataset compared to
other state-of-the-art models. The overall F; score of our model is comparable to other models.
Additionally, our proposed model outperformed other models in terms of AUC, Fijax»
Fg—,,and Gg-, on the CPSC2018 dataset.
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