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ARTICLE INFO    ABSTRACT 

Received: 19/5/2025 The availability of affordable and user-friendly electrocardiogram 
monitors has improved healthcare for patients with periodic heart 
arrhythmias. However, effectively diagnosing electrocardiogram records 
remains challenging, even for experienced medical professionals. This 
work introduced a transfer learning-based algorithm for 
electrocardiogram classification using lightweight Densely Connected 
Convolutional Networks (DenseNets) integrated with Bidirectional Long 
Short-Term Memory (BiLSTM). We first pre-trained our model on the 
Icentia11K dataset, the largest public dataset of continuous 
electrocardiogram records, then fine-tuned it on the CPSC2018 dataset. 
Our model demonstrated performance comparable to state-of-the-art 
methods, obtaining an Fଵ score of 0.839 without pre-training. With pre-
training, the Fଵ score further improved to 0.849. The proposed network 
structure outperformed existing methods in various metrics, including 
Area Under the Curve, F୫ୟ୶, Fஒୀଶ, and Gஒୀଶ. The Area Under the Curve 
and F୫ୟ୶ values were 0.986 and 0.886, respectively for CPSC2018 
dataset. 
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NÂNG CAO HIỆU SUẤT PHÂN LOẠI ĐIỆN TÂM ĐỒ DỰA TRÊN HỌC 
CHUYỂN GIAO VÀ MẠNG DENSENET-BILSTM NHẸ 
Bùi Thị Hạnh* 
Đại học Phenikaa 

THÔNG TIN BÀI BÁO    TÓM TẮT 

Ngày nhận bài: 19/5/2025 Sự xuất hiện của các thiết bị theo dõi điện tâm đồ với giá cả phải chăng 
và thân thiện với người dùng đã góp phần cải thiện dịch vụ chăm sóc sức 
khỏe cho những bệnh nhân mắc chứng rối loạn nhịp tim. Tuy nhiên, việc 
chẩn đoán hiệu quả các bản ghi điện tâm đồ vẫn là thách thức, ngay cả 
với các chuyên gia y tế giàu kinh nghiệm. Nghiên cứu này đề xuất thuật 
toán phân loại điện tâm đồ dựa trên học chuyển giao, sử dụng mạng tích 
chập kết nối dày đặc nhẹ kết hợp mạng bộ nhớ ngắn hạn hai chiều. Trước 
tiên, chúng tôi huấn luyện sơ bộ mô hình trên tập dữ liệu Icentia11K – 
tập dữ liệu công khai lớn nhất về các bản ghi điện tâm đồ liên tục – sau 
đó tinh chỉnh nó trên tập dữ liệu CPSC2018. Mô hình cho thấy hiệu suất 
tương đương với các phương pháp hiện đại, đạt điểm Fଵ là 0,839 mà 
không cần huấn luyện sơ bộ. Khi được huấn luyện sơ bộ, điểm Fଵ tiếp tục 
cải thiện lên 0,849. Cấu trúc mạng được đề xuất vượt trội hơn các phương 
pháp hiện tại qua nhiều chỉ số, bao gồm diện tích dưới đường cong, F୫ୟ୶, 
Fஒୀଶ, và Gஒୀଶ. Giá trị của diện tích dưới đường cong và F୫ୟ୶ lần lượt là 
0,986 và 0,886 cho tập dữ liệu CPSC2018. 
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1. Introduction 

Electrocardiogram (ECG) classification is challenging when done manually, even for experts. 
Therefore, automated methods that can analyze and classify ECG signals quickly and accurately 
are essential. Researchers have developed various approaches, with the most widely used being 
classic machine learning (ML), deep learning (DL), and hybrid models. ML methods have shown 
promise in ECG classification [1]. One study introduced a novel technique to reduce 12-lead ECG 
classification to a single lead through a teacher-student model, achieving significant compression 
with only a slight accuracy drop of 0.81% [2]. Another approach enhanced classification and 
arrhythmia analysis through three stages: signal quality improvement, wavelet-based feature 
extraction, and classification using a hidden Markov model, reaching 99.7% accuracy with high 
sensitivity and predictive value [3]. DL, a subset of ML, has also delivered remarkable results by 
effectively analyzing arrhythmias and cardiac abnormalities. The Depthwise Separable 
Convolutional Neural Network (CNN) with Focal Loss (DSC-FL-CNN) improved performance on 
imbalanced datasets, achieving a strong F₁ score on the MIT-BIH (Massachusetts Institute of 
Technology (MIT) and Beth Israel Hospital (BIH)) arrhythmia database [4]. Other notable DL 
models including Deform-CNN [5] and DMSFNet [6] achieved high accuracy across datasets. 
DenseNet architectures have also demonstrated strong performance in ECG classification, as they 
efficiently extract and transmit detailed feature representations throughout the network layers [7], 
[8]. Other than DL methods, Bidirectional Long Short-Term Memory (BiLSTM) models have also 
demonstrated good performance by capturing temporal context from both directions. The IB-
LSTM framework [9] achieved high accuracy in classifying atrial fibrillation (AF) signals on 
public databases. Hybrid models that integrate different DL techniques have further improved 
classification accuracy. For example, a CNN-LSTM hybrid [10] addressed data imbalance and 
achieved high sensitivity (97.87%) and specificity (99.29%) on the MIT-BIH dataset. 

In addition to method development, the use of computational techniques like transfer learning 
has enhanced ECG classification by leveraging pre-trained models on large-scale datasets, 
improving performance, and reducing training time on limited data [11], [12]. In this study, we 
introduce a transfer learning-based model combining lightweight Dense Convolutional Networks 
and BiLSTM. The model was pre-trained on an upstream dataset, then it was fine-tuned on 
downstream datasets. Experiments showed that integrating a 1D dense convolutional network for 
local feature extraction with a BiLSTM and global max pooling for global representation yielded 
the best results. Comparative analysis was conducted with other models on the downstream dataset 
to evaluate the performance of our model. 

2. Materials and methods 

In the work [8], we introduced a compact model design derived from Densely Connected 
Convolutional Networks, comprising 37 convolutional layers, referred to as DenseNet-37. It was 
shown that the DenseNet-37 model had comparable performance with other models but required 
less computational cost. In this study, we employed transfer learning to enhance the performance 
of multi-label classification of 12-lead ECG signals. First, DenseNet-37 model was trained on the 
upstream dataset (ICENTIA11K [13]) to acquire the pre-trained weights. Next, a deep learning 
network based on DenseNet-37 combined with a BiLSTM [14] layer was fine-tuned on the China 
Physiological Signal Challenge 2018 (CPSC2018) dataset [15]. Figure 1 illustrates the flow chart 
of the proposed method. 

2.1. Experimental datasets 

ICENTIA11K: Our model underwent pre-training on the ICENTIA11K [13] dataset, 
comprising continuous raw ECG signals with a 16-bit resolution sampled at 250 Hz. This dataset, 
collected using the CartioSTATTM device, consists of 2 billion labeled beats from 11 thousand 
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patients and serves as a valuable resource for beat and rhythm classification tasks through 
representation learning. The dataset was annotated initially using proprietary analysis tools by 
technologists of Icentia, followed by a review conducted by senior technologists. 

 
Figure 1. Flow chart diagram of transfer learning procedure for ECG classification 

China Physiological Signal Challenge 2018 (CPSC2018): The CPSC2018 [15] dataset was 
gathered from 9458 patients across 11 different hospitals, which includes 9831 standard 12-lead 
ECG records with lengths ranging from 6 seconds to 60 seconds and sampled at 500 Hz. It consists 
of 12-lead ECG recordings labeled with nine types of cardiac conditions. The nine types are: 
Normal rhythm (NORM), Atrial fibrillation (AF), First-degree atrioventricular block (I-AVB), Left 
bundle branch block (LBBB), Right bundle branch block (RBBB), Premature atrial contraction 
(PAC), Premature ventricular contraction (PVC), ST-segment depression (STD), and ST-segment 
elevation (STE). The training set (6877 records) of this dataset is publicly available, while the test 
set remains undisclosed. Each record in the dataset can be assigned up to three labels, which include 
one normal sinus rhythm and eight abnormal ECG types. Out of the 6877 recordings in the 
CPSC2018 dataset, 476 recordings have two or three different labels assigned to them. 

2.2. Architecture of proposed network 

In this study, we proposed a network structure to improve the multi-label 12-lead ECG 
classification. Our network structure, DenseNet-BiLSTM, was built by combining the DenseNet-
37 [8] and BiLSTM [16] networks. Firstly, ECG signals were used as the input for DenseNet-37 
model, which worked as the local feature learning component of the network architecture. 
DenseNet-37 is a lightweight model developed with 3 dense blocks and some improvements, such 
as larger kernel filters, growth rate, and the number of input channels that were also changed 
compared to the original DenseNets network [8]. This model enables extracting local features and 
compressing the lengthy ECG record into a more concise series of local feature vectors derived 
from input segments. The feature vectors extracted from the data were then fed into the BiLSTM 
[16] layer, consisting of forward and backward LSTM components, to process sequential features. 
The LSTM layers captured local features from surrounding time steps, producing local-focused 
global feature vectors of length 64, aligned with the number of LSTM units. These were passed 
through a GMP layer to form a single global feature representation for classification. A classifier 
then categorized ECG signals using these features, consisting of a dense layer with 9 cells (for the 
9 classes) and a sigmoid activation layer. The dense layer performed class recognition, while the 
activation layer output the probability distribution across the 9 classes. 
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2.3. Experimentation details 

2.3.1. Pre-processing 

The signals from the CPSC2018 dataset were downsampled from 500 Hz to 250 Hz to ensure 
consistency with the sampling rate of the ICENTIA11K dataset. As convolutional neural networks 
require inputs of consistent length, we cropped or padded the downsampled ECG signals to a fixed 
length of 30 seconds. That means the shorter signals were extended to 30 seconds by appending 
zero-valued data at the beginning, while longer signals were truncated to the first 30 seconds. 

2.3.2. Pre-training  

Pre-training is to obtain favorable initial weights to enhance model learning. The DenseNet-37 
model was pre-trained on the Icentia11K dataset, using 80% for training and 20% for validation. 
Short ECG frames were sampled and standardized using the overall mean and standard deviation. 
Each frame was analyzed for abnormalities; those without abnormalities were labeled as regular 
beats, while frames with multiple abnormalities were labeled by the most frequent beat type. We 
applied the Cyclic Learning Rate technique [17], adjusting the rate from 10ି଺ to 10ିଶ via the 
triangular2 policy. Model weights were checkpointed at each epoch, and we reverted to the 
checkpoint with the lowest validation loss. 

2.3.3. Fine-tuning  

For fine-tuning, the CPSC2018 dataset was partitioned at random into 75% for training, 5% for 
validation, and 20% for testing, with class distribution maintained across all subsets. As a multi-
label classification task, the model used a sigmoid-activated output layer and binary cross-entropy 
loss. Training employed a mini-batch size of 8, considering GPU memory and trainable parameters. 
CNNs were trained for up to 200 epochs with early stopping if the training F₁ score did not increase 
for 30 epochs. The Cyclic Learning Rate technique [17] adjusted the learning rate automatically, 
and the Adam optimizer was used with default settings. 

After each epoch, F₁ score on the validation set was recorded. Upon completion of training, the 
model was restored to the checkpoint with the highest validation macro F₁ score. Output values 
between 0 and 1 were considered abnormal if they exceeded a threshold, which was selected by 
maximizing the F₁ score on the precision-recall curve. The fine-tuning procedure was conducted 
over 10 iterations, each time drawing fresh training and validation subsets at random from the 80% 
training partition. The final model used for evaluation was the one whose average precision was 
just above the median across all runs. This model’s macro-averaged scores were then evaluated on 
the test set. 

3. Results and discussion 

3.1. Evaluation metrics 

The effectiveness of our model was assessed using several evaluation metrics, including Area 
Under the Curve (AUC), Fଵ score, Fஒ, Gஒ. Fஒ and Gஒ were computed according to formulas (1) and 
(2) respectively, with β = 2. The value of β = 2 indicates a higher emphasis on recall compared 
to precision, prioritizing the ability of the model to identify positive instances correctly. 

Fஒ =
(ଵାஒమ)×୘୔

୊୔ାஒమ×୊୒ା(ଵାஒమ)×୘୔
                                                      (1) 

Gஒ =
୘୔

୘୔ା୊୔ାஒ×୊୒
                                                          (2) 

Where TP and NP are True and False Positive, respectively. TN and FN are True and False 
Negative, respectively.  
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3.2. Performance on the downstream datasets 

First, we evaluated the performance of our model against other leading architectures on the 
CPSC2018 dataset considering Fଵ score. The results were summarized in Table 1. We presented 
the results for both cases, with and without pre-training. With pre-training, there was a significant 
improvement in the Fଵ score. However, without pre-training, the evaluation metrics were already 
comparable to those achieved by other methods. Our proposed model achieved the highest 
Fଵ scores for 3 out of 9 types, specifically Normal, PAC, and STE. The model proposed by Li et 
al. [18] attained the highest Fଵ score for AF of 0.949. In this study, they introduced a model 
structure called DSE-ResNet, designed for the automatic classification of normal rhythm and 8 
cardiac arrhythmias using two-dimensional ECG data. In order to improve the classification 
performance of the model, hyper-parameter optimization is performed using an orthogonal 
experiment method. On the other hand, the work by Zhang et al. [19] achieved the highest average 
Fଵ score across all types. This work presented MLBF-Net, an architecture for arrhythmia 
classification using multi-lead ECG data. MLBF-Net incorporated multi-loss optimization to learn 
the integrity and diversity of the ECG signals jointly. The architecture consisted of lead-specific 
branches, cross-lead features fusion, and multi-loss co-optimization. 

Table 1. Comparison of the proposed model performance on our test set with related works for the 
CPSC2018 dataset [15]. The maximal score in each column is bolded 

Authors Evaluation metrics 
Normal   AF   I-AVB   LBBB   RBBB   PAC   PVC    STD      STE      𝐅𝟏 

Jeong et al, [4] 0.770   0.860   0.800    0.890     0.850   0.530   0.640   0.760   0.520   0.740 
Qin et al, [5] 0.805   0.931   0.893    0.900     0.948   0.663   0.871   0.800   0.667   0.831 
Zhang et al, [20] 0.805   0.919   0.864    0.866     0.926   0.735   0.851   0.814   0.535   0.813 
Zhang et al, [21] 0.812   0.875   0.923    0.929     0.776   0.753   0.793   0.837   0.900   0.844 
Zhang et al. [19] 0.847   0.934   0.884    0.896     0.939   0.822   0.878   0.818   0.677   0.855 
Li et al. [18] 0.787   0.949   0.870    0.970     0.935   0.764   0.897   0.748   0.667   0.843 
Hanh et al. [8] 0.824   0.900   0.834    0.718     0.867   0.732   0.834   0.809   0.912   0.826 
This work   
Non pre-training 0.883   0.902   0.857    0.682     0.878   0.828   0.814   0.812   0.899   0.839 
Pre-training 0.886   0.922   0.821    0.685     0.889   0.830   0.852   0.823   0.932   0.849 

Table 2. Comparison of our model with the others for the CPSC2018 [15] dataset using different metrics. 
The maximal score in each column is bolded. ND means not determined 

Authors Evaluation metrics 
AUC     F୫ୟ୶     Fஒୀଶ     Gஒୀଶ 

Strodthoff et al. [12] 0.974     0.855     0.819     0.602 
Jeong et al. [22] 0.850     ND        ND          ND 
Qin et al. [5] 0.969     ND        ND          ND 
Zhang et al. [20] 0.970     ND        ND          ND 
Weimann et al. [11] 0.961     0.854     0.814     0.591 
Li et al. [23] 0.974     ND        ND          ND 
Hanh et al. [8] 0.969     0.860     0.804     0.594 
This work 
Non pre-training 0.985     0.881     0.823     0.628 
Pre-training 0.986     0.886     0.837     0.647 

Next, we analyzed the performance of our proposed model using four additional metrics: AUC, 
F୫ୟ୶, Fஒୀଶ, Gஒୀଶ. The results, presented in Table 2, showed a better performance of our model 
over all others in all four metrics, even without pre-training. Notably, pre-training did lead to 
improvements in Fஒୀଶ, Gஒୀଶ, but it did not have a significant impact on AUC and F୫ୟ . In the 
study [8], the DenseNet-37 architecture was employed as a standalone model for ECG signal 
classification and yielded relatively good results compared to other models. In this work, we 
utilized the DenseNet-37 architecture; however, the weights were pre-trained on the Icentia11K 
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dataset before being transferred to the CPSC2018 and PTB-XL datasets. Furthermore, the output 
of DenseNet-37 served as the input for the BiLSTM layer, which is effective for processing time-
dependent data like ECG signals. Consequently, the DenseNet-BiLSTM model exhibited a 
significant performance improvement compared to the DenseNet-37 model. 

In order to assess the robustness of the model, we also conducted experiments by varying the 
size of the train set while keeping the validation and test sets unchanged. The train set sizes were 
50% and 25%, randomly selected from a pool comprising 75% of the original train set. As depicted 
in Figure 2, the smaller train set sizes corresponded to lower evaluation metrics. However, even 
with the smallest train set size of 25%, the evaluation metrics remain reasonably good, suggesting 
the robustness of the proposed model. 

 

Figure 2. (Bootstrapped scores) Empirical distribution of AUC, 𝐹௠௔௫ , 𝐹ఉୀଶ, 𝐺ఉୀଶ and 𝐹ଵ score on the test 
set of the CPSC2018. Outliers are shown as black diamonds 

4. Conclusion 

We introduced a transfer learning-based approach to enhance the classification of multi-label 
12-lead ECGs. Our proposed network combined DenseNet for local feature learning and BiLSTM 
with Global Maximum Pooling for global feature learning. We pre-trained the model using the 
Icentia11K dataset and fine-tuned it on the CPSC2018. The performance evaluation of our 
proposed model on the CPSC2018 dataset demonstrated its good performance even without pre-
training. With pre-training, the performance of the proposed model improved slightly. Our model 
achieved the highest Fଵ score for three out of nine classes in the CPSC2018 dataset compared to 
other state-of-the-art models. The overall Fଵ score of our model is comparable to other models. 
Additionally, our proposed model outperformed other models in terms of AUC, F୫ୟ୶, 
Fஒୀଶ, and Gஒୀଶ on the CPSC2018 dataset. 
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