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dimensional convolutional neural network to extract local features from raw
electrocardiogram signals, effectively capturing significant patterns in the
input data. Subsequently, a long short-term memory network is employed to
exploit the temporal dependencies within the signal, enabling the model to
understand contextual relationships and dynamic changes in features over
time. To further improve the model's ability to focus on the most relevant
information for classification, a multihead attention mechanism is integrated
Long short-term memory after the long short-term memory layer. This attention mechanism allows the
Multihead attention model to learn the relative importance of different segments within the signal
sequence more effectively. Experimental results demonstrate that the
combination of one-dimensional convolutional neural network, long short-
term memory, and multihead attention yields high performance, achieving an
accuracy of over 97% in classifying four types of heart diseases. The
proposed method shows promising potential for the application of artificial
intelligence in the automated diagnosis of cardiovascular conditions.
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1. Introduction

Cardiovascular diseases are among the leading causes of death worldwide, requiring early and
accurate diagnosis to reduce risks and improve treatment effectiveness. Electrocardiography
(ECQ) is a widely used method for detecting and diagnosing heart diseases. By recording the
heart’s electrical activity over time, ECG provides essential data that help doctors quickly and
accurately assess a patient’s cardiac condition. However, ECG signal analysis is still largely
manual or semi-automated, relying heavily on the expertise of medical professionals. This
dependence can lead to diagnostic errors, especially in cases with complex or noisy signals.
Additionally, with the increasing number of cardiovascular patients globally, interpreting large
volumes of ECG signals poses a major challenge for healthcare facilities, highlighting the urgent
need for fast and accurate automated diagnostic systems. As a result, developing artificial
intelligence-based (Al-based) ECG analysis systems with high accuracy and efficiency has
become a key research focus in modern medicine.

In recent years, deep learning methods have been widely applied to ECG signal analysis due
to their effectiveness in detecting abnormalities. Paper [1] introduces the Artificial Neural
Network (ANNet) neural network for detecting cardiac abnormalities from ECG data collected
via loT Edge sensors. The model uses the Synthetic Minority Oversampling Technique (SMOTE)
technique to balance training data and combines Long Short-Term Memory (LSTM) and Multi-
Layer Perceptron (MLP) blocks to predict irregular heartbeats, achieving 97% accuracy with low
resource requirements, making it suitable for mobile IoT devices. Paper [2] presents ECG-
Attribute-Decomposed Generative Adversarial Network (ADGAN), a model based on Generative
Adversarial Network (GAN) combined with bidirectional LSTM to enhance noise reduction and
detect abnormal heart rhythms. By using a batch-wise discrimination process, this method
preserves variability in anomaly detection, reaching an accuracy of 95.5%. Paper [3] explores
transfer learning using convolutional neural networks (CNNs) for ECG signal classification. The
authors propose converting signals into image representations such as spectrograms or recurrence
plots before feeding them into models like ResNet, Visual Geometry Group (VGG) and Inception
for feature extraction. Experimental results show this approach improves accuracy and reduces
training time compared to traditional techniques. Paper [4] proposes an unsupervised learning
method for heartbeat anomaly detection using transformer layers and dropout mechanisms to
prevent overfitting and enhance feature extraction. When tested on ECG5000 and Massachusetts
Institute of Technology - Beth Israel Hospital (MIT-BIH) Arrhythmia datasets, the model
achieved accuracies of 99% and 89.5%, respectively. Paper [5] introduces a multi-model deep
learning system combining CNN-LSTM and RRHOS-LSTM to improve ECG classification
while validating results with another CNN-LSTM model to reduce false positives. Experiments
on MIT-BIH data showed an accuracy of 95.81%. Paper [6] presents two models, EnsCVDD-Net
and BICVDD-Net, for heart disease detection by integrating LeNet and Gated Recurrent Unit
(GRU). EnsCVDD-Net aggregates classification results from LeNet and GRU, while BICVDD-
Net combines these networks as the foundation for an MLP-based ensemble. ECG data is
preprocessed with the Adaptive Synthetic Sampling (ADASYN) method to balance sample sizes
and Point-Biserial Correlation Coefficient (PBCC) coefficients are used for feature extraction.
EnsCVDD-Net achieved 88% accuracy with a processing time of 777 seconds, while BICVDD-
Net reached 91% accuracy in 247 seconds. Paper [7] focuses on early detection of congenital
heart disease in children by combining ECG wave data, wavelet features and manually inputted
information. The deep learning model, implemented on the Keras platform, achieved a Receiver
Operating Characteristic - Area Under the Curve (ROC-AUC) score of 0.915 and a specificity of
0.881 when tested on data from the Outpatient Cardiology Department of Guangdong Provincial
People's Hospital (China). Paper [8] presents a CNN-based method using Short-Time Fourier
Transform (STFT) spectrograms to analyze heart thythms and detect abnormalities. Two-channel
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ECG data from MIT-BIH and European ST-T databases are preprocessed with the Hanning
function before being fed into a CNN model. Results showed that ResNetl18-Gray achieved
99.79% accuracy, while ResNet34-Gray reached 99.18%. Papers [9]-[11] propose CNN-based
models for ECG signal classification, incorporating denoising, normalization, data augmentation
and frequency analysis for preprocessing. Experimental results demonstrate that these methods
accurately classify heart conditions from ECG data, outperforming traditional machine learning
models and showing practical applicability. Paper [12] introduces a denoising autoencoder (DAE)
combined with ConvBiLSTM. Using DAE in preprocessing enhances feature prominence by
adding and self-removing noise, improving input data quality for ConvBiLSTM. This
combination achieved high performance, with a test accuracy of 98%. Paper [13] employed
Temporal Convolutional Networks (TCNs) for heartbeat classification on the ECG5000 dataset,
achieving an accuracy of 94.2% and improving Balanced Accuracy by 16.5% compared to the
state-of-the-art (SoA). Paper [14] applied a Transformer-based architecture with multi-scale
shifted windows to extract features from 12-lead ECG signals, achieving a macro Fl-score of
approximately 77.85% and a sample Fl-score of around 81.26% on the PTBXL-2020 dataset.
While TCNs offer efficient sequence modeling, they have limitations with fixed receptive fields
and limited adaptability to non-uniform EEG patterns. Similarly, Transformers capture long-
range dependencies well but are computationally intensive, require large datasets, and risk
overfitting due to their high parameter count. Also, both models have problems with noisy, small-
scale EEG data and may lack the inductive biases needed for effective temporal feature
extraction, making them less ideal in isolation for EEG signal analysis.

Recent studies have demonstrated the strong potential of deep learning models in ECG signal
analysis, particularly CNNs for local feature extraction and LSTM networks for modeling
temporal dependencies. However, fully capturing long-term dependencies in ECG segments
remains challenging, especially in the presence of noise, signal variability, and temporal
complexity. To address this, researchers have explored advanced architectures such as
Transformer and TCNs. Transformer models, while effective in sequence modeling, typically
require substantial computational resources and large-scale annotated datasets to generalize well.
Moreover, the self-attention mechanism treats all positions equally, which may lead to overfitting
when applied to small or imbalanced datasets. TCNs utilize dilated convolutions to model long-
range dependencies more efficiently. However, their reliance on fixed-size convolutional kernels
limits their ability to adapt to variable-length dependencies or irregular patterns—characteristics
commonly observed in ECG data.

To overcome these limitations, this paper proposes a hybrid model combining one-
dimensional convolutional neural networks (1D-CNN), LSTM networks and the multihead
attention mechanism for classifying four types of heart conditions. The 1D-CNN extracts local
features from ECG signals, enabling the model to recognize key heartbeat patterns. Next, the
LSTM learns sequential relationships, enhancing memory retention. Finally, the Multihead
Attention mechanism helps the model focus on critical signal regions, improving its ability to
differentiate between different arrhythmias, including Sinus Bradycardia (SB), Atrial Fibrillation
(AFIB), Sinus Tachycardia (ST) and Normal Sinus Rhythm (SR). Experimental results show that
this combination enhances classification accuracy and improves generalization across diverse
ECG datasets, contributing to more effective automatic diagnosis in clinical applications.

2. Methods
2.1. One-dimensional convolutional neural networks (1D-CNN)

The 1D-CNN is a deep learning architecture designed for sequential data processing, capable
of automatically extracting local features through convolution operations and reducing data
dimensionality via pooling. In a 1D-CNN, a convolutional layer slides a filter W € RX over the
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input X € R", where n is the input length, the output at position i is computed as y; =
f(Z}(:_O1 WjXi4j + b). Here, k is the kernel size, W; is the filter weight at index j , b € R is the bias
term and f is the activation function. The Max Pooling layer y; = max(X;, Xii1, --o» Xivk—-1)
reduces data dimensionality while selecting key features. Techniques such as Batch

Normalization X; = x‘;” , where p and o are the batch mean and standard deviation, and Dropout
enhance model stability and reduce overfitting. The general structure of a 1D-CNN consists of
multiple convolutional blocks (ConvlD) with activation functions (ReLU), followed by pooling
layers and fully connected (FC) layers for classification. The model is optimized using the Cross-
Entropy loss function L =—YN . y;log($;) , where y; is the ground-truth label, §; is the

predicted probability, and N is the number of training samples. The model is trained with the

Adam algorithm, which updates weights as W « W —n ;—VI;/ where 1 is the learning rate and :_;v is

the gradient of the loss with respect to the weights. With its ability to automatically learn features
without manual extraction, 1D-CNN is highly effective in classifying sequential data such as
ECG signals, audio and time series [15].

2.2. Long short-term memory (LSTM)

LSTM network is a type of recurrent neural network (RNN) designed to handle long-term
dependencies in time series data through a gating mechanism, overcoming the vanishing gradient
problem in traditional RNNs [16]. At each time step t, the memory state of LSTM is regulated by
three key gates: Forget gate f; = 0(Wsh_; + Ugx, + b¢) determines the amount of information to
discard from the previous state; input gate iy = o(W;h;_; + U;x; + b;) controls the update of new
information into memory and candidate memory state C, = tanh(Wh;_; + U.x; + b)
represents new candidate information to be added; output gate o, = o(Wyhi_; + Uyx, + b,)
regulates how much of the memory state contributes to the output. The memory state is updated
as Cy = fy © Ce_q + iy © C; and the hidden output of LSTM is h, = o, O tanh(C,). Here, o is
the sigmoid activation function, tanh is the hyperbolic tangent function, and © denotes element-
wise multiplication. The input vector X, € R%, the hidden state h, € R%, and the cell state
C¢ € R% at time t. The matrices W,, U, € R%*%x  and R%*%n _respectively, and the bias vectors
b. € R%, where * € {f,i,0,c} are trainable parameters. With this structure, LSTM effectively
captures and retains temporal dependencies, enhancing performance in sequence-based tasks
such as ECG signal analysis and time series processing.

2.3. Multihead Attention

The Multihead Attention (MHA) mechanism enables models to learn relationships between
elements in a sequence by using multiple attention heads in parallel [17]. Given an input sequence
X € R™ dmodel where n is the sequence length and d,,.4 is the model dimensionality, MHA
projects the input into queries Q;, keys K;, and values V; for each attention head i via learnable
linear projections Q; = XWiQ, K; = XWK, V; = XW/, where WiQ,WiK, W/ € R¥moderXdkc gre
trainable weight matrices for the i** head, and d, is the dimensionality of the projected space.

T

%) V;. The outputs of
all h attention heads are concatenated and projected back to the original dimension using a final linear
layer MultiHead(Q, K, V) = Concat(head,, ..., head, )W?, where W° € RMwXdmodel ig  the output
projection matrix, d,, is the dimensionality of each value vector, and h is the number of heads. By
attending to information from multiple representation subspaces, MHA effectively captures long-range
dependencies in sequential data. This makes it suitable for a wide range of applications including
natural language processing, computer vision, and biomedical signal analysis such as ECG.

Each attention head computes head; = Attention(Q;, K;, V;) = softmax(
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2.4. Proposed method

In this paper, we propose an improved deep learning approach for detecting four types of heart
disease by combining 1D-CNN, LSTM and the Multihead Attention mechanism. Figure 1
illustrates the overall architecture of the proposed method. First, the input data is processed
through four convolutional blocks, each consisting of two consecutive 1D-CNN layers to extract
local features from the signal. After every two convolutional layers, a MaxPooling layer is
applied to reduce output size, minimize the number of parameters, prevent overfitting and retain
the most significant features. The number of filters in the 1D-CNN layers increases progressively
across the blocks (32, 64, 128 and 256) to enhance feature learning capabilities, allowing the
model to detect heart rhythm abnormalities more accurately. However, CNN primarily captures
local features and struggles to model long-term dependencies in sequential data. To address this
limitation, an LSTM layer is integrated after the four convolutional blocks to learn temporal
dependencies in ECG signals. Once the features are extracted by LSTM, the Multihead Attention
mechanism is applied to enhance the model’s focus on crucial signal regions. Not all segments of
an ECG signal contain equally valuable information—some segments may include critical
pathological markers, while others may contain noise or minor fluctuations. While self-attention
mechanisms are known to be effective in capturing global dependencies, a single-head self-
attention mechanism may be insufficient to capture the diverse types of relationships present in
noisy, non-linear biomedical signals like ECG. In contrast, Multihead Attention improves upon
this limitation by employing multiple attention heads in parallel, allowing the model to project
the input sequence into different representation subspaces and learn varied attention patterns
simultaneously. This parallel mechanism enables the model to capture a richer set of temporal
relationships, including subtle, localized features as well as long-range dependencies, which may
not be effectively modeled by a single attention head. Furthermore, Multihead Attention has been
empirically shown to outperform single-head self-attention and even full Transformer encoders in
certain biomedical applications when data is limited or noisy. For example, Kwon et al. [18]
demonstrated that Multihead Attention enhances the robustness of EEG signal denoising
compared to standard attention mechanisms. Zhao et al. [19] showed that integrating Multihead
Attention with CNN-LSTM leads to better generalization in epileptic seizure detection. Similarly,
Roy et al. [20] emphasized that multi-representation attention helps focus on clinically relevant
regions in physiological signals while suppressing irrelevant fluctuations. Given that the dataset
used in this study is relatively small and includes real-world noise, employing a full Transformer
encoder could lead to overfitting and instability during training. Therefore, Multihead Attention
strikes a balance between model complexity and interpretability, while still significantly
improving performance. This design choice not only boosts the model's classification accuracy
but also enhances its ability to differentiate between heart rhythms in a clinically meaningful way.
Finally, the model’s output is passed through a classifier to determine four heartbeat categories:
Atrial Fibrillation (AFIB), Sinus Bradycardia (SB), Normal Sinus Rhythm (SR) and Sinus
Tachycardia (ST). By integrating 1D-CNN, LSTM and Multihead Attention, the model
effectively learns local features, sequential dependencies and optimizes its focus on critical signal
segments. This architecture enhances classification accuracy compared to traditional methods.

3. Experimental results
3.1. Dataset

This study utilizes the A 12-lead electrocardiogram database, which contains 12 different
cardiac conditions recorded from 10,646 patients, as referenced in [21]. Due to the imbalance in
sample distribution across different conditions, the research team focuses on four specific types
for model training and evaluation. In details, the dataset includes: SB (1,800 recordings), SR
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(1,826 recordings), AFIB (1,780 recordings) and ST (1,568 recordings).

Model Accuracy

12-LEAD
ELECTROCARDIOGRAM

CNN-LSTM  ——1
/ DN =2
031,/ Proposed Model 3

0 20 40 60 80 100
Epochs

Figure 1. Overall architecture of the proposed Figure 2. Accuracy trends of three models with 100
method epochs

3.2. Results

In this section, we present the training and testing results of different models in detecting
cardiac conditions. The model training was conducted on a system equipped with an Intel Xeon
CPU 2.20GHz, an NVIDIA Tesla T4 GPU with 16GB VRAM, 16GB RAM and Python 3.6. After
conducting experiments with various hyperparameter sets, we selected the optimal training
configuration as follows: random_state = 42, learning_rate = le-4, kernel size = 5, pool_size = 2,
and dropout = 0.2. The Multi-Head Attention module in the proposed model utilizes 8 heads,
each with a dimensionality of 8. Before being fed into the model, the data was preprocessed,
encoded and normalized. It was then split into training and testing sets in an 80:20 ratio. Figure 2
illustrates the accuracy trends of three models (CNN-LSTM, 1D-CNN and the proposed model)
during testing over 100 epochs. The x-axis represents the number of epochs, while the y-axis
indicates accuracy. The curves demonstrate how each model's performance evolves over time,
allowing for an evaluation of their learning capabilities.

During the initial 0-20 epochs, all models exhibit a rapid increase in accuracy, indicating their
ability to learn features effectively from the early stages. The proposed model (green curve)
converges faster than CNN-LSTM (1) and 1D-CNN (2), reaching high accuracy within just 10
epochs. In the 20-100 epoch range, all three models achieve high accuracy (> 90%) and stabilize
around this value. The 1D-CNN model (2) achieves accuracy close to the proposed model but
exhibits greater fluctuations, likely due to its inability to capture long-term dependencies in ECG
signals. The CNN-LSTM model (1) converges more slowly than the other two models in the
early stages but stabilizes after approximately 40 epochs. This suggests that using LSTM alone,
without an attention mechanism, may hinder the model's ability to rapidly learn key features. The
proposed model (3) maintains more stable accuracy compared to the other models, with lower
fluctuations, demonstrating better generalization on ECG data.

To further demonstrate the effectiveness of the proposed method, we conducted a statistical
analysis and compared four evaluation metrics across the trained models: Precision, Recall, F1-
Score, and Accuracy. Specifically, Accuracy is defined as the ratio of correctly classified samples
to the total number of samples in the test set. Precision measures the proportion of correctly
predicted samples for a given class among all samples predicted as belonging to that class.
Recall denotes the proportion of correctly predicted samples of a class relative to the total
number of actual samples of that class. The F1-Score is the harmonic mean of Precision and
Recall, providing a balanced assessment of the model’s performance on both metrics [22], [23].
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The average values of these four metrics across the target classes are summarized in Table 1.

Table 1. Accuracy comparison results for 3 models

Model Accuracy Precision Recall F1-Score
1D-CNN 95.84% 97.60% 97.93% 96.87%
CNN-LSTM 96.98% 96.26% 98.82% 97.52%
Proposed model 97.34% 97.93% 96.16% 97.93%

To provide a more intuitive representation of classification accuracy on the test dataset, we
utilize confusion matrices in Figures 3a, 3b and 3¢, corresponding to the 1D-CNN, CNN-LSTM
and the proposed model, respectively. These matrices offer detailed insights into the classification
performance of each model for four heartbeat categories: Atrial Fibrillation (AFIB), Sinus
Bradycardia (SB), Normal Sinus Rhythm (SR) and Sinus Tachycardia (ST). The vertical axis
represents actual values, while the horizontal axis represents predicted values.

Confusion Matrix Confusion Matrix

AFIB 1

SB

True label
True label

SR

9
-
°
'S
N
]
S
M)
g

g ] & & o 2 & %
2
Predicted label Predicted label
(@) ()

SB 0

True label

SR 3

ST

a

AFIB

Predicted label

(©
Figure 3. Confusion matrix of (a) 1D-CNN model, (b) CNN-LSTM model, (c) proposed model

The confusion matrices indicate that the 1D-CNN model performs well overall, especially in
identifying the SB class, but struggles with distinguishing SR from other classes. The CNN-
LSTM model improves classification accuracy, particularly for AFIB and SB, though
misclassification between SR and SB remains an issue. The proposed model, which combines
I1D-CNN, LSTM, and Multihead Attention, achieves the best overall performance, significantly
reducing misclassification across all classes - especially for AFIB and SR - demonstrating its
superior capability in accurately identifying different heart rhythms.

To provide a more objective and comprehensive evaluation of the performance of each model,
we conducted a statistical analysis using one-way ANOVA to compare the classification
performance among the three models. Specifically, each model (1D-CNN, CNN-LSTM, and the
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proposed model) was trained and evaluated five times to ensure the stability of the results. The
ANOVA test yielded a p-value of 0.0122, which is lower than the significance level of 0.05. This
indicates that the performance differences among the models are statistically significant and not
due to random variation. These findings further support the effectiveness and the well-founded
design choice of the integrated model proposed in this study.

4. Conclusions

This paper proposes a method that combines 1D-CNN, LSTM and the Multihead Attention
mechanism to classify cardiac arrhythmias using data from a 12-lead electrocardiogram. The
model focuses on identifying four heart conditions: Sinus Bradycardia (SB), Atrial Fibrillation
(AFIB), Sinus Tachycardia (ST) and Normal Sinus Rhythm (SR). In this approach, CNN layers
are used to extract features, LSTM captures temporal dependencies and Multihead Attention
enhances the model’s focus on critical signal segments, thereby improving classification
accuracy. Experimental results show that the proposed method achieves an accuracy of 97.34%,
outperforming previous models and highlighting the potential of deep learning in automatically
detecting heart diseases from ECG signals. In the future, we aim to further optimize the model
and enhance its accuracy to better support medical diagnosis and treatment.
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