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ARTICLE INFO   ABSTRACT 

Received: 29/5/2025 This paper proposes an improved method to enhance the accuracy of 
classifying cardiovascular diseases based on electrocardiogram signals by 
applying a deep learning model composed of multiple integrated 
components. Specifically, the model architecture is built upon a one-
dimensional convolutional neural network to extract local features from raw 
electrocardiogram signals, effectively capturing significant patterns in the 
input data. Subsequently, a long short-term memory network is employed to 
exploit the temporal dependencies within the signal, enabling the model to 
understand contextual relationships and dynamic changes in features over 
time. To further improve the model's ability to focus on the most relevant 
information for classification, a multihead attention mechanism is integrated 
after the long short-term memory layer. This attention mechanism allows the 
model to learn the relative importance of different segments within the signal 
sequence more effectively. Experimental results demonstrate that the 
combination of one-dimensional convolutional neural network, long short-
term memory, and multihead attention yields high performance, achieving an 
accuracy of over 97% in classifying four types of heart diseases. The 
proposed method shows promising potential for the application of artificial 
intelligence in the automated diagnosis of cardiovascular conditions. 
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THÔNG TIN BÀI BÁO  TÓM TẮT 

Ngày nhận bài: 29/5/2025 Bài báo này đề xuất một phương pháp cải tiến nhằm nâng cao độ chính xác 
trong việc phân loại các bệnh lý tim mạch dựa trên tín hiệu điện tâm đồ 
thông qua việc ứng dụng một mô hình học sâu tích hợp nhiều thành phần. Cụ 
thể, kiến trúc mô hình được xây dựng dựa trên mạng nơ-ron tích chập một 
chiều  để trích xuất các đặc trưng cục bộ từ tín hiệu điện tâm đồ, qua đó nhận 
diện hiệu quả các mẫu quan trọng trong dữ liệu đầu vào. Tiếp theo, mạng bộ 
nhớ dài ngắn hạn được sử dụng để khai thác các mối quan hệ theo thời gian 
trong tín hiệu, giúp mô hình hiểu được ngữ cảnh và sự biến đổi động của các 
đặc trưng trong quá trình hoạt động của tim. Nhằm nâng cao khả năng tập 
trung vào những thông tin có liên quan nhất đến nhiệm vụ phân loại, cơ chế 
chú ý đa đầu được tích hợp sau lớp bộ nhớ dài ngắn hạn. Cơ chế này cho 
phép mô hình học các trọng số của từng đoạn trong chuỗi tín hiệu một cách 
hiệu quả hơn. Kết quả thực nghiệm cho thấy sự kết hợp giữa mạng nơ-ron 
tích chập một chiều, bộ nhớ dài ngắn hạn và cơ chế chú ý đa đầu mang lại 
hiệu suất cao, đạt độ chính xác trên 97% trong việc phân loại bốn loại bệnh 
lý tim. Phương pháp được đề xuất cho thấy tiềm năng đầy hứa hẹn trong việc 
ứng dụng trí tuệ nhân tạo vào hệ thống chẩn đoán tự động các bệnh lý tim 
mạch. 
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1. Introduction 

Cardiovascular diseases are among the leading causes of death worldwide, requiring early and 
accurate diagnosis to reduce risks and improve treatment effectiveness. Electrocardiography 
(ECG) is a widely used method for detecting and diagnosing heart diseases. By recording the 
heart’s electrical activity over time, ECG provides essential data that help doctors quickly and 
accurately assess a patient’s cardiac condition. However, ECG signal analysis is still largely 
manual or semi-automated, relying heavily on the expertise of medical professionals. This 
dependence can lead to diagnostic errors, especially in cases with complex or noisy signals. 
Additionally, with the increasing number of cardiovascular patients globally, interpreting large 
volumes of ECG signals poses a major challenge for healthcare facilities, highlighting the urgent 
need for fast and accurate automated diagnostic systems. As a result, developing artificial 
intelligence-based (AI-based) ECG analysis systems with high accuracy and efficiency has 
become a key research focus in modern medicine. 

In recent years, deep learning methods have been widely applied to ECG signal analysis due 
to their effectiveness in detecting abnormalities. Paper [1] introduces the Artificial Neural 
Network (ANNet) neural network for detecting cardiac abnormalities from ECG data collected 
via IoT Edge sensors. The model uses the Synthetic Minority Oversampling Technique (SMOTE) 
technique to balance training data and combines Long Short-Term Memory (LSTM) and Multi-
Layer Perceptron (MLP) blocks to predict irregular heartbeats, achieving 97% accuracy with low 
resource requirements, making it suitable for mobile IoT devices. Paper [2] presents ECG- 
Attribute-Decomposed Generative Adversarial Network (ADGAN), a model based on Generative 
Adversarial Network (GAN) combined with bidirectional LSTM to enhance noise reduction and 
detect abnormal heart rhythms. By using a batch-wise discrimination process, this method 
preserves variability in anomaly detection, reaching an accuracy of 95.5%. Paper [3] explores 
transfer learning using convolutional neural networks (CNNs) for ECG signal classification. The 
authors propose converting signals into image representations such as spectrograms or recurrence 
plots before feeding them into models like ResNet, Visual Geometry Group (VGG) and Inception 
for feature extraction. Experimental results show this approach improves accuracy and reduces 
training time compared to traditional techniques. Paper [4] proposes an unsupervised learning 
method for heartbeat anomaly detection using transformer layers and dropout mechanisms to 
prevent overfitting and enhance feature extraction. When tested on ECG5000 and Massachusetts 
Institute of Technology - Beth Israel Hospital (MIT-BIH) Arrhythmia datasets, the model 
achieved accuracies of 99% and 89.5%, respectively. Paper [5] introduces a multi-model deep 
learning system combining CNN-LSTM and RRHOS-LSTM to improve ECG classification 
while validating results with another CNN-LSTM model to reduce false positives. Experiments 
on MIT-BIH data showed an accuracy of 95.81%. Paper [6] presents two models, EnsCVDD-Net 
and BlCVDD-Net, for heart disease detection by integrating LeNet and Gated Recurrent Unit 
(GRU). EnsCVDD-Net aggregates classification results from LeNet and GRU, while BlCVDD-
Net combines these networks as the foundation for an MLP-based ensemble. ECG data is 
preprocessed with the Adaptive Synthetic Sampling (ADASYN) method to balance sample sizes 
and Point-Biserial Correlation Coefficient (PBCC) coefficients are used for feature extraction. 
EnsCVDD-Net achieved 88% accuracy with a processing time of 777 seconds, while BlCVDD-
Net reached 91% accuracy in 247 seconds. Paper [7] focuses on early detection of congenital 
heart disease in children by combining ECG wave data, wavelet features and manually inputted 
information. The deep learning model, implemented on the Keras platform, achieved a Receiver 
Operating Characteristic - Area Under the Curve (ROC-AUC) score of 0.915 and a specificity of 
0.881 when tested on data from the Outpatient Cardiology Department of Guangdong Provincial 
People's Hospital (China). Paper [8] presents a CNN-based method using Short-Time Fourier 
Transform (STFT) spectrograms to analyze heart rhythms and detect abnormalities. Two-channel 
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ECG data from MIT-BIH and European ST-T databases are preprocessed with the Hanning 
function before being fed into a CNN model. Results showed that ResNet18-Gray achieved 
99.79% accuracy, while ResNet34-Gray reached 99.18%. Papers [9]-[11] propose CNN-based 
models for ECG signal classification, incorporating denoising, normalization, data augmentation 
and frequency analysis for preprocessing. Experimental results demonstrate that these methods 
accurately classify heart conditions from ECG data, outperforming traditional machine learning 
models and showing practical applicability. Paper [12] introduces a denoising autoencoder (DAE) 
combined with ConvBiLSTM. Using DAE in preprocessing enhances feature prominence by 
adding and self-removing noise, improving input data quality for ConvBiLSTM. This 
combination achieved high performance, with a test accuracy of 98%. Paper [13] employed 
Temporal Convolutional Networks (TCNs) for heartbeat classification on the ECG5000 dataset, 
achieving an accuracy of 94.2% and improving Balanced Accuracy by 16.5% compared to the 
state-of-the-art (SoA). Paper [14] applied a Transformer-based architecture with multi-scale 
shifted windows to extract features from 12-lead ECG signals, achieving a macro F1-score of 
approximately 77.85% and a sample F1-score of around 81.26% on the PTBXL-2020 dataset. 
While TCNs offer efficient sequence modeling, they have limitations with fixed receptive fields 
and limited adaptability to non-uniform EEG patterns. Similarly, Transformers capture long-
range dependencies well but are computationally intensive, require large datasets, and risk 
overfitting due to their high parameter count. Also, both models have problems with noisy, small-
scale EEG data and may lack the inductive biases needed for effective temporal feature 
extraction, making them less ideal in isolation for EEG signal analysis. 

Recent studies have demonstrated the strong potential of deep learning models in ECG signal 
analysis, particularly CNNs for local feature extraction and LSTM networks for modeling 
temporal dependencies. However, fully capturing long-term dependencies in ECG segments 
remains challenging, especially in the presence of noise, signal variability, and temporal 
complexity. To address this, researchers have explored advanced architectures such as 
Transformer and TCNs. Transformer models, while effective in sequence modeling, typically 
require substantial computational resources and large-scale annotated datasets to generalize well. 
Moreover, the self-attention mechanism treats all positions equally, which may lead to overfitting 
when applied to small or imbalanced datasets. TCNs utilize dilated convolutions to model long-
range dependencies more efficiently. However, their reliance on fixed-size convolutional kernels 
limits their ability to adapt to variable-length dependencies or irregular patterns—characteristics 
commonly observed in ECG data. 

To overcome these limitations, this paper proposes a hybrid model combining one-
dimensional convolutional neural networks (1D-CNN), LSTM networks and the multihead 
attention mechanism for classifying four types of heart conditions. The 1D-CNN extracts local 
features from ECG signals, enabling the model to recognize key heartbeat patterns. Next, the 
LSTM learns sequential relationships, enhancing memory retention. Finally, the Multihead 
Attention mechanism helps the model focus on critical signal regions, improving its ability to 
differentiate between different arrhythmias, including Sinus Bradycardia (SB), Atrial Fibrillation 
(AFIB), Sinus Tachycardia (ST) and Normal Sinus Rhythm (SR). Experimental results show that 
this combination enhances classification accuracy and improves generalization across diverse 
ECG datasets, contributing to more effective automatic diagnosis in clinical applications. 

2. Methods 

2.1. One-dimensional convolutional neural networks (1D-CNN) 

The 1D-CNN is a deep learning architecture designed for sequential data processing, capable 
of automatically extracting local features through convolution operations and reducing data 
dimensionality via pooling. In a 1D-CNN, a convolutional layer slides a filter W ∈  R୩ over the 
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input X ∈  R୬, where 𝑛 is the input length, the output at position i is computed as y୧ =

f(∑ W୨X୧ା୨
୩ିଵ
୨ୀ଴ + b). Here, k is the kernel size, W௝  is the filter weight at index 𝑗 , b ϵ R is the bias 

term and f is the activation function. The Max Pooling layer 𝑦௜ = 𝑚𝑎𝑥(𝑋௜ , 𝑋௜ାଵ, … , 𝑋௜ା௞ିଵ) 
reduces data dimensionality while selecting key features. Techniques such as Batch 
Normalization 𝑥ො௜ =

௫೔ିఓ

ఙ
 , where 𝜇 and 𝜎 are the batch mean and standard deviation, and Dropout 

enhance model stability and reduce overfitting. The general structure of a 1D-CNN consists of 
multiple convolutional blocks (Conv1D) with activation functions (ReLU), followed by pooling 
layers and fully connected (FC) layers for classification. The model is optimized using the Cross-
Entropy loss function 𝐿 = − ∑  ே

௜ୀଵ 𝑦௜ log(𝑦ො௜) , where 𝑦௜ is the ground-truth label, 𝑦ො௜ is the 
predicted probability, and 𝑁 is the number of training samples. The model is trained with the 

Adam algorithm, which updates weights as 𝑊 ← 𝑊 − 𝜂
డ௅

డௐ
 where η is the learning rate and 

ப୐

ப୛
 is 

the gradient of the loss with respect to the weights. With its ability to automatically learn features 
without manual extraction, 1D-CNN is highly effective in classifying sequential data such as 
ECG signals, audio and time series [15]. 

2.2. Long short-term memory (LSTM) 

LSTM network is a type of recurrent neural network (RNN) designed to handle long-term 
dependencies in time series data through a gating mechanism, overcoming the vanishing gradient 
problem in traditional RNNs [16]. At each time step t, the memory state of LSTM is regulated by 
three key gates: Forget gate f୲ = σ(W୤h୲ିଵ + U୤x୲ + b୤) determines the amount of information to 
discard from the previous state; input gate i୲ = σ(W୧h୲ିଵ + U୧x୲ + b୧) controls the update of new 
information into memory and candidate memory state C෨ ୲ = tanh (Wୡh୲ିଵ + Uୡx୲ + bୡ) 
represents new candidate information to be added; output gate o୲ = σ(W୭h୲ିଵ + U୭x୲ + b୭) 
regulates how much of the memory state contributes to the output. The memory state is updated 
as C୲ = f୲ ⊙ C୲ିଵ + i୲ ⊙ C̃୲ and the hidden output of LSTM is h୲ = o୲ ⊙ tanh (C୲). Here, 𝜎 is 
the sigmoid activation function, 𝑡𝑎𝑛ℎ is the hyperbolic tangent function, and ⊙ denotes element-
wise multiplication. The input vector x୲ 𝜖 𝑅ௗೣ , the hidden state h୲ 𝜖 𝑅ௗ೓ , and the cell state 
C୲ 𝜖 𝑅ௗ೓  at time 𝑡. The matrices W∗, U∗ 𝜖 𝑅ௗ೓×ௗೣ  , and 𝑅ௗ೓×ௗ೓ , respectively, and the bias vectors 
b∗ 𝜖 𝑅ௗ೓ , where ∗  𝜖 {𝑓, 𝑖, 𝑜, 𝑐} are trainable parameters. With this structure, LSTM effectively 
captures and retains temporal dependencies, enhancing performance in sequence-based tasks 
such as ECG signal analysis and time series processing. 

2.3. Multihead Attention 

The Multihead Attention (MHA) mechanism enables models to learn relationships between 
elements in a sequence by using multiple attention heads in parallel [17]. Given an input sequence 
X ∈ ℝ௡×ௗmodel, where 𝑛 is the sequence length and 𝑑model is the model dimensionality, MHA 
projects the input into queries Q௜, keys K௜, and values V௜ for each attention head 𝑖 via learnable 
linear projections Q௜ = XW௜

ொ, K௜ = XW௜
௄, V௜ = XW௜

௏, where W௜
ொ, W௜

௄, W௜
௏ ∈ ℝௗmodel×ௗೖ  are 

trainable weight matrices for the 𝑖௧௛ head, and 𝑑௞ is the dimensionality of the projected space. 

Each attention head computes head௜ = Attention(Q௜, K௜, V௜) = softmax ൬
୕೔୏೔

఻

ඥௗೖ
൰ V௜. The outputs of 

all ℎ attention heads are concatenated and projected back to the original dimension using a final linear 
layer MultiHead(Q, K, V) = Concat(headଵ, … , head௛)Wை, where Wை ∈ ℝ௛ௗೡ×ௗmodel  is the output 
projection matrix, 𝑑௩  is the dimensionality of each value vector, and ℎ is the number of heads. By 
attending to information from multiple representation subspaces, MHA effectively captures long-range 
dependencies in sequential data. This makes it suitable for a wide range of applications including 
natural language processing, computer vision, and biomedical signal analysis such as ECG. 
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2.4. Proposed method 

In this paper, we propose an improved deep learning approach for detecting four types of heart 
disease by combining 1D-CNN, LSTM and the Multihead Attention mechanism. Figure 1 
illustrates the overall architecture of the proposed method. First, the input data is processed 
through four convolutional blocks, each consisting of two consecutive 1D-CNN layers to extract 
local features from the signal. After every two convolutional layers, a MaxPooling layer is 
applied to reduce output size, minimize the number of parameters, prevent overfitting and retain 
the most significant features. The number of filters in the 1D-CNN layers increases progressively 
across the blocks (32, 64, 128 and 256) to enhance feature learning capabilities, allowing the 
model to detect heart rhythm abnormalities more accurately. However, CNN primarily captures 
local features and struggles to model long-term dependencies in sequential data. To address this 
limitation, an LSTM layer is integrated after the four convolutional blocks to learn temporal 
dependencies in ECG signals. Once the features are extracted by LSTM, the Multihead Attention 
mechanism is applied to enhance the model’s focus on crucial signal regions. Not all segments of 
an ECG signal contain equally valuable information—some segments may include critical 
pathological markers, while others may contain noise or minor fluctuations. While self-attention 
mechanisms are known to be effective in capturing global dependencies, a single-head self-
attention mechanism may be insufficient to capture the diverse types of relationships present in 
noisy, non-linear biomedical signals like ECG. In contrast, Multihead Attention improves upon 
this limitation by employing multiple attention heads in parallel, allowing the model to project 
the input sequence into different representation subspaces and learn varied attention patterns 
simultaneously. This parallel mechanism enables the model to capture a richer set of temporal 
relationships, including subtle, localized features as well as long-range dependencies, which may 
not be effectively modeled by a single attention head. Furthermore, Multihead Attention has been 
empirically shown to outperform single-head self-attention and even full Transformer encoders in 
certain biomedical applications when data is limited or noisy. For example, Kwon et al. [18] 
demonstrated that Multihead Attention enhances the robustness of EEG signal denoising 
compared to standard attention mechanisms. Zhao et al. [19] showed that integrating Multihead 
Attention with CNN-LSTM leads to better generalization in epileptic seizure detection. Similarly, 
Roy et al. [20] emphasized that multi-representation attention helps focus on clinically relevant 
regions in physiological signals while suppressing irrelevant fluctuations. Given that the dataset 
used in this study is relatively small and includes real-world noise, employing a full Transformer 
encoder could lead to overfitting and instability during training. Therefore, Multihead Attention 
strikes a balance between model complexity and interpretability, while still significantly 
improving performance. This design choice not only boosts the model's classification accuracy 
but also enhances its ability to differentiate between heart rhythms in a clinically meaningful way. 
Finally, the model’s output is passed through a classifier to determine four heartbeat categories: 
Atrial Fibrillation (AFIB), Sinus Bradycardia (SB), Normal Sinus Rhythm (SR) and Sinus 
Tachycardia (ST). By integrating 1D-CNN, LSTM and Multihead Attention, the model 
effectively learns local features, sequential dependencies and optimizes its focus on critical signal 
segments. This architecture enhances classification accuracy compared to traditional methods. 

3. Experimental results 

3.1. Dataset 

This study utilizes the A 12-lead electrocardiogram database, which contains 12 different 
cardiac conditions recorded from 10,646 patients, as referenced in [21]. Due to the imbalance in 
sample distribution across different conditions, the research team focuses on four specific types 
for model training and evaluation. In details, the dataset includes: SB (1,800 recordings), SR 
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(1,826 recordings), AFIB (1,780 recordings) and ST (1,568 recordings). 

 

Figure 1. Overall architecture of the proposed 
method 

 
Figure 2. Accuracy trends of three models with 100 

epochs 

3.2. Results 

In this section, we present the training and testing results of different models in detecting 
cardiac conditions. The model training was conducted on a system equipped with an Intel Xeon 
CPU 2.20GHz, an NVIDIA Tesla T4 GPU with 16GB VRAM, 16GB RAM and Python 3.6. After 
conducting experiments with various hyperparameter sets, we selected the optimal training 
configuration as follows: random_state = 42, learning_rate = 1e-4, kernel_size = 5, pool_size = 2, 
and dropout = 0.2. The Multi-Head Attention module in the proposed model utilizes 8 heads, 
each with a dimensionality of 8. Before being fed into the model, the data was preprocessed, 
encoded and normalized. It was then split into training and testing sets in an 80:20 ratio. Figure 2 
illustrates the accuracy trends of three models (CNN-LSTM, 1D-CNN and the proposed model) 
during testing over 100 epochs. The x-axis represents the number of epochs, while the y-axis 
indicates accuracy. The curves demonstrate how each model's performance evolves over time, 
allowing for an evaluation of their learning capabilities. 

During the initial 0–20 epochs, all models exhibit a rapid increase in accuracy, indicating their 
ability to learn features effectively from the early stages. The proposed model (green curve) 
converges faster than CNN-LSTM (1) and 1D-CNN (2), reaching high accuracy within just 10 
epochs. In the 20–100 epoch range, all three models achieve high accuracy (> 90%) and stabilize 
around this value. The 1D-CNN model (2) achieves accuracy close to the proposed model but 
exhibits greater fluctuations, likely due to its inability to capture long-term dependencies in ECG 
signals. The CNN-LSTM model (1) converges more slowly than the other two models in the 
early stages but stabilizes after approximately 40 epochs. This suggests that using LSTM alone, 
without an attention mechanism, may hinder the model's ability to rapidly learn key features. The 
proposed model (3) maintains more stable accuracy compared to the other models, with lower 
fluctuations, demonstrating better generalization on ECG data. 

To further demonstrate the effectiveness of the proposed method, we conducted a statistical 
analysis and compared four evaluation metrics across the trained models: Precision, Recall, F1-
Score, and Accuracy. Specifically, Accuracy is defined as the ratio of correctly classified samples 
to the total number of samples in the test set. Precision measures the proportion of correctly 
predicted samples for a given class among all samples predicted as belonging to that class. 
Recall denotes the proportion of correctly predicted samples of a class relative to the total 
number of actual samples of that class. The F1-Score is the harmonic mean of Precision and 
Recall, providing a balanced assessment of the model’s performance on both metrics [22], [23]. 
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The average values of these four metrics across the target classes are summarized in Table 1. 

Table 1. Accuracy comparison results for 3 models 

Model Accuracy Precision Recall F1-Score 
1D-CNN 95.84% 97.60% 97.93% 96.87% 

CNN-LSTM 96.98% 96.26% 98.82% 97.52% 
Proposed model 97.34% 97.93% 96.16% 97.93% 

To provide a more intuitive representation of classification accuracy on the test dataset, we 
utilize confusion matrices in Figures 3a, 3b and 3c, corresponding to the 1D-CNN, CNN-LSTM 
and the proposed model, respectively. These matrices offer detailed insights into the classification 
performance of each model for four heartbeat categories: Atrial Fibrillation (AFIB), Sinus 
Bradycardia (SB), Normal Sinus Rhythm (SR) and Sinus Tachycardia (ST). The vertical axis 
represents actual values, while the horizontal axis represents predicted values. 

 
(a) (b) 

 
(c) 

Figure 3. Confusion matrix of (a) 1D-CNN model, (b) CNN-LSTM model, (c) proposed model 

The confusion matrices indicate that the 1D-CNN model performs well overall, especially in 
identifying the SB class, but struggles with distinguishing SR from other classes. The CNN-
LSTM model improves classification accuracy, particularly for AFIB and SB, though 
misclassification between SR and SB remains an issue. The proposed model, which combines 
1D-CNN, LSTM, and Multihead Attention, achieves the best overall performance, significantly 
reducing misclassification across all classes - especially for AFIB and SR - demonstrating its 
superior capability in accurately identifying different heart rhythms. 

To provide a more objective and comprehensive evaluation of the performance of each model, 
we conducted a statistical analysis using one-way ANOVA to compare the classification 
performance among the three models. Specifically, each model (1D-CNN, CNN-LSTM, and the 
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proposed model) was trained and evaluated five times to ensure the stability of the results. The 
ANOVA test yielded a p-value of 0.0122, which is lower than the significance level of 0.05. This 
indicates that the performance differences among the models are statistically significant and not 
due to random variation. These findings further support the effectiveness and the well-founded 
design choice of the integrated model proposed in this study. 

4. Conclusions 

This paper proposes a method that combines 1D-CNN, LSTM and the Multihead Attention 
mechanism to classify cardiac arrhythmias using data from a 12-lead electrocardiogram. The 
model focuses on identifying four heart conditions: Sinus Bradycardia (SB), Atrial Fibrillation 
(AFIB), Sinus Tachycardia (ST) and Normal Sinus Rhythm (SR). In this approach, CNN layers 
are used to extract features, LSTM captures temporal dependencies and Multihead Attention 
enhances the model’s focus on critical signal segments, thereby improving classification 
accuracy. Experimental results show that the proposed method achieves an accuracy of 97.34%, 
outperforming previous models and highlighting the potential of deep learning in automatically 
detecting heart diseases from ECG signals. In the future, we aim to further optimize the model 
and enhance its accuracy to better support medical diagnosis and treatment. 

Acknowledgements  

This research is funded by University of Transport and Communications (UTC) under grant 
number  T2025-CN-002. 

REFERENCES 

[1] G. Sivapalan, K. K. Nundy, S. Dev, B. Cardiff, and D. John, “ANNet: A lightweight neural network for 
ECG anomaly detection in IoT edge sensors,” IEEE Trans. Biomed. Circuits Syst., vol. 16, no. 1, pp. 
24–35, Jan. 2022, doi: 10.1109/TBCAS.2021.3137646. 

[2] J. Qin, F. Gao, Z. Wang, D. C. Wong, Z. Zhao, S. D. Relton, and H. Fang, “A novel temporal generative 
adversarial network for electrocardiography anomaly detection,” Artif. Intell. Med., vol. 136, Jan. 
2023, Art. no. 102489, doi: 10.1016/j.artmed.2023.102489. 

[3] L. Mohebbanaaz, V. R. Kumar, and Y. P. Sai, “A new transfer learning approach to detect cardiac 
arrhythmia from ECG,” Signal Image Video Process., vol. 16, no. 7, pp. 1945–1953, Jul. 2022, doi: 
10.1007/s11760-022-02155-w. 

[4] A. Alamr and A. Artoli, “Unsupervised transformer-based anomaly detection in ECG signals,” 
Algorithms, vol. 16, no. 3, Mar. 2023, Art. no. 152, doi: 10.3390/a16030152. 

[5] X. Zhang, Z. Huo, and Q. Wu, “An ensemble of deep learning-based multi-model for ECG heartbeats 
arrhythmia classification,” IEEE Access, vol. 9, pp. 101746–101759, Jul. 2021, doi: 
10.1109/ACCESS.2021.3096610. 

[6] H. Khan, N. Javaid, T. Bashir, M. Akbar, N. Alrajeh, and S. Aslam, “Heart disease prediction using 
novel ensemble and blending based cardiovascular disease detection networks: EnsCVDD-Net and 
BlCVDD-Net,” IEEE Access, vol. 12, pp. 109230–109254, Jul. 2024, doi: 
10.1109/ACCESS.2024.3421241. 

[7] J. Chen, S. Huang, Y. Zhang, et al., “Congenital heart disease detection by pediatric electrocardiogram 
based deep learning integrated with human concepts,” Nat. Commun., vol. 15, Jan. 2024, doi: 
10.1038/s41467-024-44930-y. 

[8] H. Li and P. Boulanger, “Structural anomalies detection from electrocardiogram (ECG) with 
spectrogram and handcrafted features,” Sensors, vol. 22, no. 7, Mar. 2022, Art. no. 2467, doi: 
10.3390/s22072467. 

[9] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara, J. H. Tan, and M. Adam, “Automated detection of 
arrhythmias using different intervals of tachycardia ECG segments with convolutional neural 
network,” Inf. Sci., vol. 405, pp. 81–90, Sep. 2017, doi: 10.1016/j.ins.2017.04.012. 

[10] P. Rajpurkar, A. Y. Hannun, M. Haghpanahi, C. Bourn, and A. Y. Ng, “Cardiologist-level arrhythmia 
detection with convolutional neural networks,” arXiv preprint, arXiv:1707.01836, Jul. 2017. 

[11] O. Yildirim, U. B. Baloglu, R. S. Tan, and U. R. Acharya, “A deep convolutional neural network 



TNU Journal of Science and Technology 230(07): 299 - 307 
 

http://jst.tnu.edu.vn                                                  307                                                 Email: jst@tnu.edu.vn 

model for automated identification of abnormal heart rhythms using ECG signals,” Appl. Soft Comput., 
vol. 84, Oct. 2019, Art. no. 105619, doi: 10.1016/j.asoc.2019.105619. 

[12] B. Tutuko, A. Darmawahyuni, S. Nurmaini, A. E. Tondas, M. N. Rachmatullah, et al., “DAE-
ConvBiLSTM: End-to-end learning single-lead electrocardiogram signal for heart abnormalities 
detection,” PLoS ONE, vol. 17, no. 12, Dec. 2022, Art. no. e0277932, doi: 
10.1371/journal.pone.0277932.  

[13] T. M. Ingolfsson, H. A. A. Madsen, A. Laursen, and P. Popovski, “ECG-TCN: Wearable Cardiac 
Arrhythmia Detection with a Temporal Convolutional Network,” IEEE Transactions on Biomedical 
Circuits and Systems, vol. 17, no. 2, pp. 225–238, Apr. 2023, doi: 10.1109/TBCAS.2023.3240431. 

[14] R. Cheng, S. Li, Z. Zhang, J. Chen, and X. Hu, “MSW-Transformer: Multi-Scale Shifted Windows 
Transformer Networks for 12-Lead ECG Classification,” arXiv preprint arXiv:2311.13583, 2023. 
[Online]. Available: https://arxiv.org/abs/2311.13583. [Accessed Feb. 15, 2025]. 

[15] D. Li, J. Zhang, Q. Zhang, and X. Wei, “Classification of ECG signals based on 1D convolution neural 
network,” in Proc. 2017 IEEE 19th Int. Conf. e-Health Netw., Appl. Serv. (Healthcom), Dalian, China, 
Oct. 2017, pp. 1–6, doi: 10.1109/HealthCom.2017.8210842. 

[16] T. D. Pham, “Time–frequency time–space LSTM for robust classification of physiological signals,” 
Sci. Rep., vol. 11, Mar. 2021, doi: 10.1038/s41598-021-86390-1. 

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, 
“Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, pp. 5998–6008, Dec. 2017. 

[18] T. Kwon, H. Lee, J. Kim, and B. Lee, “Transformer-based stacked multi-head attention model for EEG 
signal denoising,” Brain Informatics, vol. 10, no. 1, pp. 1–13, 2023. 

[19] S. Roy, A. Kiral-Kornek, and D. M. Harrer, “Deep learning enabling technology for epileptic seizure 
detection using EEG,” in Proc. IEEE EMBC, 2019, pp. 1–4. 

[20] Z. Zhao, Q. Zhang, H. Liu, L. Peng, and Y. Li, “Epileptic Seizure Detection Based on Multi-Head 
Attention Mechanism and CNN-LSTM Network,” IEEE Access, vol. 10, pp. 19424–19435, 2022. 

[21] J. Zheng, J. Zhang, S. Danioko, et al., “A 12-lead electrocardiogram database for arrhythmia research 
covering more than 10,000 patients,” Sci. Data, vol. 7, Feb. 2020, doi: 10.1038/s41597-020-0386-x. 

[22]  C. W. Cleverdon, “Factors Determining the Performance of Indexing Systems,” Aslib Cranfield 
Research Project, 1966. 

[23]  C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Butterworth-Heinemann, 1979. 

 


