
TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 361 Email: jst@tnu.edu.vn

A PYTHON-BASED SIMULATION AND EMBEDDED IMPLEMENTATION OF

SPACEVECTOR PULSE WIDTH MODULATION ON STM32 CONTROLLERS

Nguyen Tien Hung
*

TNU - University of Technology

ARTICLE INFO ABSTRACT

Received: 24/6/2025 This paper presents a detailed approach to developing and validating the

space-vector pulse width modulation technique using the Python

programming environment. The proposed simulation framework is

implemented entirely in Python scripts and models a two-level, three-phase

voltage-source inverter. It includes essential functions such as Clarke and

Park transformations, sector determination, and duty cycle computation

based on vector time decomposition. Unlike traditional simulation tools

that rely on graphical user interfaces, the script-based method offers greater

transparency and control over algorithmic implementation, enabling users

to better understand each computational step involved in pulse generation.

Although this approach may be less familiar to users accustomed to

commercial block-diagram environments, it enhances comprehension of

modulation principles and inverter behavior. Additionally, the Python script

is designed with portability in mind, allowing straightforward conversion

into embedded C code for real-time execution on STM32G431

microcontrollers. Experimental results confirm that the proposed method

offers fast simulation times and reduced code complexity compared to

conventional simulation tool chains.

Revised: 26/11/2025

Published: 26/11/2025

KEYWORDS

Space-vector pulse width

modulation

Three-phase voltage inverter

Python programming

Python simulation

STM32G431 microcontroller

MÔ PHỎNG PYTHON VÀ THỰC HIỆN ĐIỀU CHẾ VECTƠ KHÔNG GIAN

TRÊN BỘ ĐIỀU KHIỂN STM32

Nguyễn Tiến Hưng

Trường Đại học Kỹ thuật Công nghiệp – ĐH Thái Nguyên

THÔNG TIN BÀI BÁO TÓM TẮT

Ngày nhận bài: 24/6/2025 Bài báo trình bày một phương pháp tiếp cận để phát triển và kiểm chứng kỹ

thuật điều chế vectơ không gian trong môi trường lập trình Python. Phần mô

phỏng được triển khai hoàn toàn bằng tập lệnh Python để mô hình hóa một bộ

biến đổi nguồn áp ba pha, hai cấp. Trình mô phỏng bao gồm các chức năng

cơ bản như phép biến đổi Clarke và Park, xác định các sector và tính các chu

kỳ nhiệm vụ dựa trên phân tích các vectơ theo thời gian. Không giống như

các công cụ mô phỏng truyền thống dựa trên giao diện đồ họa, phương pháp

dựa trên tập lệnh cung cấp tính minh bạch và khả năng kiểm soát tốt hơn đối

với việc triển khai thuật toán, cho phép người dùng hiểu rõ hơn từng bước

tính toán liên quan đến việc tạo xung. Mặc dù phương pháp tiếp cận này có

thể ít quen thuộc hơn đối với người dùng đã quen với các phần mềm thương

mại sử dụng các sơ đồ khối, nhưng nó giúp tăng cường khả năng hiểu rõ các

nguyên tắc điều chế và hành vi của bộ biến tần. Ngoài ra, tập lệnh Python

được thiết kế có tính đến tính tương thích, cho phép chuyển đổi trực tiếp

thành mã C nhúng để thực thi trên vi điều khiển STM32G431 trong thời gian

thực. Kết quả thử nghiệm xác nhận rằng phương pháp được đề xuất cung cấp

thời gian mô phỏng nhanh và giảm độ phức tạp của mã so với chuỗi công cụ

mô phỏng thông thường.

Ngày hoàn thiện: 26/11/2025

Ngày đăng: 26/11/2025

TỪ KHÓA

Điều chế không gian vector

Bộ biến đổi nguồn áp ba pha

Lập trình Python

Mô phỏng Python

Vi điều khiển STM32G431

DOI: https://doi.org/10.34238/tnu-jst.13117

Email: h.nguyentien@tnut.edu.vn

https://doi.org/10.34238/tnu-jst.13117

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 362 Email: jst@tnu.edu.vn

1. Introduction

Three-phase inverters are widely used in power electronics to convert direct current (DC) into

alternating current (AC) with controllable amplitude and frequency, making them essential in

motor drives, renewable energy systems, and industrial automation, and power converters [1],

[2]. The quality of the output waveform generated by an inverter is determined by the switching

states of its six semiconductor switches, which directly control the synthesis of the AC voltage.

Several modulation techniques have been developed, including the six-step inverter method,

hysteresis current control, sinusoidal pulse width modulation (SPWM), and space vector pulse

width modulation (SVPWM), each offering specific trade-offs in complexity, efficiency, and

waveform quality [3] – [5].

SVPWM is a fundamental control strategy widely employed in three-phase voltage-source

inverters for industrial drives, renewable energy systems, and embedded power applications. It

provides efficient and continuous modulation of output voltage magnitude, frequency, and phase

angle, resulting in superior performance compared to traditional sinusoidal pulse-width

modulation (PWM) techniques. While multilevel SVPWM methods have been developed to

improve output waveform quality and reduce total harmonic distortion, the two-level, three-phase

(2L3P) inverter remains the pedagogical and practical baseline due to its hardware simplicity,

robust performance, and mathematically tractable control algorithm [6] – [8]. In practical

applications, three major performance criteria must be addressed: harmonic distortion, switching

frequency, and the effective utilization of the DC link voltage. Minimizing harmonic content in

the output waveform is crucial, as lower harmonics improve the efficiency and dynamic

performance of motor drive systems and reduce the need for bulky filtering components.

Increasing the switching frequency typically enhances the smoothness of the output current and

improves dynamic response. However, it also results in higher switching losses and thermal

stress, and is limited by the physical switching speed and dead-time constraints of the

semiconductor devices [9] – [11].

Despite the extensive theoretical and simulation-based literature on SVPWM, many published

works offer limited discussion on the link between simulation and practical implementation

details, particularly for real-time embedded systems. As a result, this paper presents a

comprehensive approach that transitions from well-established simulation environments to a

performance-validated implementation of SVPWM, suitable for both academic use and real-

world embedded control systems. The SVPWM will be implemented on a 32-bit ARM Cortex-

M4-based microcontroller. This work serves as a practical reference for researchers and

educators seeking to bridge the gap between SVPWM theory and its deployment on modern

microcontroller platforms.

The rest of this paper is organized as follows. Section 2 presents the three-phase voltage

source inverter and the SVPWM technique, including its principle and a Python-based simulation

of the SVPWM strategy. The simulation and experimental results from the implementation of

SVPWM on STM32 controllers are addressed in Section 3. Finally, the conclusions and future

directions are provided in Section 4.

2. Three-phase voltage source inverter and SVPWM technique

2.1. Principle of space vector modulation

Let the three-phase sinusoidal voltage component be , (

),

 (

), where is the stator angular frequency, is the amplitude of the

supply voltage. The SVPWM technique is aimed at swiftly estimating the reference voltage vector

 in the coordinate by combining the switching states representing the fundamental space

vectors. Vectors , , , , , and represent varied non-zero vectors. The two

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 363 Email: jst@tnu.edu.vn

vectors, and , are known as null (or zero) vectors since they are derived when all windings

are on the positive or negative terminals of the DC bus. The eight base vectors separated by a 60-

degree phase difference from each other are formed in a hexagonal diagram in stator-fixed

coordinates. The six base vectors shape the hexagon with six sectors as shown in Figure 1a.

The two specific vectors, and , are plotted at the origin of the hexagon.

(a) (b)

Figure 1. The standard voltage vectors (a) and the realization of an arbitrary voltage vector from two

boundary vectors (b)

Now, let us assume that the vector to be realized, , is located in the sector , the area

between the standard vectors and as shown in Figure 1b. The reference vector can

be implemented by applying vector for a specified time and vector for a specified time

 . During the remaining time of , the applied voltage should be imposed to zero by applying

the null vector (or). The time for the null vector is denoted by (or). The necessary

times , , and (or) can be calculated as follows [12], [13].

| |

| |
,

| |

| |
, - (1)

The realization of voltage vector can now be represented as follows:

 ()

 ()

(2)

Switching durations , and at any sector = 1 to 6 can be expressed as [8-9]

 √
| |

 (

) (

)

(3)

 √
| |

 (

) (

)

(4)

 () (5)

where √
| |

 is called the magnitude modulation index, and

 .

2.2. A Python-based simulation of the SVPWM strategy

To initiate the simulation and numerical computation process, the open-source Python

libraries NumPy and SciPy are imported. The NumPy library provides essential tools for efficient

numerical operations, including array manipulation, linear algebra, and mathematical functions,

which are fundamental for vector and matrix computations in control algorithms. The SciPy

library complements this by offering a wide range of scientific computing capabilities, such as

signal processing, optimization, and integration routines. These libraries form the computational

backbone of the simulation environment and are imported as shown below:
import numpy as np

from scipy.signal import lfilter

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 364 Email: jst@tnu.edu.vn

Next, we declare necessary constants and parameters as follows:
Constants

PI = np.pi; PI_2 = PI/2; PI_3 = PI/3; _SQRT3 = np.sqrt(3); Vdc = 24.0

User-defined parameters

f_pwm = 10e3 # PWM frequency in Hz

T_sample = 1e-6 # Sampling time (s)

electrical_freq = 50 # Electrical frequency (Hz)

dead_time = 2e-6 # Dead-time in seconds

fs = 1e6 # Simulation frequency (1 MHz)

Derived values

Ts = 1/f_pwm

omega_el = 2 * PI * electrical_freq

total_time = 2/electrical_freq

time_array = np.arange(0, total_time, T_sample)
In addition to the core space vector modulation logic, the implementation includes several

auxiliary functions that support accurate and efficient signal generation. Two of the principal

supporting functions are detailed as follows:

 The normalize_angle() function ensures that the electrical angle remains bounded within a

fundamental interval. This normalization is critical for maintaining the correct orientation of

the rotating reference frame (the frame) with respect to the stationary coordinate system.

 The insert_dead_time()function is designed to introduce a non-overlapping delay, known as

dead-time, between the switching events of complementary PWM signals. The function inserts a

programmable delay at both the rising and falling edges of the main PWM signal, ensuring that

one switch is fully turned off before its complementary switch is turned on.
def normalize_angle(angle):

 a = np.fmod(angle, 2 * PI)

 return a if a >= 0 else (a + 2 * PI)

def insert_dead_time(main_pwm, T_sample, dead_time):

 pwm_len = len(main_pwm); dead_samples = int(np.ceil(dead_time / T_sample))

 complement_pwm = 1 - main_pwm; i = 1; pwm_nt = complement_pwm.copy()

 for k in range(1, pwm_len):

 if k>=i:

 i = k; if pwm_nt[i] == 0 and pwm_nt[i - 1] == 1:

 complement_pwm[i:i+dead_samples] = 1; i = i+dead_samples

 elif pwm_nt[i] == 1 and pwm_nt[i - 1] == 0: # Rising edge

 complement_pwm[i-dead_samples:i] = 1

 return complement_pwm

The switching durations derived in Equations (3), (4), and (5), corresponding respectively to

the active vector durations , and the zero vector duration , are directly applied in the

implementation of the compute_svpwm() function. Within this function, these durations are used

to determine the precise time intervals during which each inverter switch should be activated

within one PWM cycle. This implementation ensures that the reference voltage vector is

synthesized accurately by modulating the duty cycles of the three-phase output signals. The

correct computation and application of , and are essential for generating the desired

output voltage while maintaining the advantages of SVPWM. The compute_svpwm() function is

written as follows:
def compute_svpwm(Vref, angle_el):

 angle_el = normalize_angle(angle_el + PI_2)

 sector = int(np.floor(angle_el / PI_3)) + 1

 T1 = Ts * _SQRT3 * Vref/Vdc * np.sin(sector * PI_3 - angle_el)

 T2 = Ts * _SQRT3 * Vref/Vdc * np.sin(angle_el - (sector - 1) * PI_3)

 T0 = max(0.0, Ts - T1 - T2)

 if sector == 1: Ta = T1 + T2 + T0/2; Tb = T2 + T0/2; Tc = T0/2

 elif sector == 2: Ta = T1 + T0/2; Tb = T1 + T2 + T0/2; Tc = T0/2

 elif sector == 3: Ta = T0/2; Tb = T1 + T2 + T0/2; Tc = T2 + T0/2

 elif sector == 4: Ta = T0/2; Tb = T1 + T0/2; Tc = T1 + T2 + T0/2

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 365 Email: jst@tnu.edu.vn

 elif sector == 5: Ta = T2 + T0/2; Tb = T0/2; Tc = T1 + T2 + T0/2

 elif sector == 6: Ta = T1 + T2 + T0/2; Tb = T0/2; Tc = T1 + T0/2

 else: Ta = Tb = Tc = 0

 return T1, T2, T0, Ta, Tb, Tc

3. Simulation results and implementation

3.1. Simulation results

(a) (b)

Figure 2. Line-to-line voltages , , and phase currents , , with RL load

The waveforms of the line-to-line voltages , , and , along with their corresponding

filtered signals, are illustrated in Figure 2a. As observed from the figure, the unfiltered voltages

exhibit the characteristic stepped pattern of SVPWM, resulting from the discrete switching states

of the inverter. After applying a low-pass filter to these signals, the fundamental components

emerge clearly, revealing sinusoidal waveforms with minimal distortion. Figure 2b presents the

measured waveforms of the three-phase currents , , and under a balanced load consisting of

a resistor and a 1 mH inductor per phase. As illustrated in the figure, the phase currents

exhibit smooth, nearly sinusoidal waveforms with minimal distortion, indicating that the

SVPWM strategy effectively minimizes switching harmonics and delivers high-quality output.

3.2. The implementation of SVPWM on STM32 controllers

To demonstrate the implementation of the SVPWM on the STM32G431 microcontroller, the

corresponding Python code was translated into C language. The resulting program operates in a

bare-metal environment, meaning it does not rely on the Hardware Abstraction Layer (HAL),

Low-Layer (LL), or CMSIS libraries provided by STMicroelectronics. Instead, all peripheral

control is performed through direct manipulation of memory-mapped registers. This low-level

approach enables precise control over timing, system performance, and hardware behavior.

In this paper, we use Timer 1 working in center-aligned mode with dead-time insertion to

implement the SVPWM algorithm. Suppose the clock frequency supplied to Timer 1 is
 MHz and the PWM frequency is kHz. Then, the ARR (auto-reload value) in the

center-aligne mode is calculated as [14], [15]:

 RR

 (PSC)

 (6)

where the prescaler (PSC) value of the timer is set to 0. Furthermore, the dead-time is chosen of

 . First, we define the following constants

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 366 Email: jst@tnu.edu.vn

#define VDC 24.0f

#define POLE_PAIRS 4 // Number of pole pairs

#define TSAMP 0.0001f // Sampling time 100~us step

#define F_CPU 170000000UL

#define PWM_FREQ 5000

#define PWM_PERIOD (F_CPU/PWM_FREQ/2) // Center-aligned PWM

#define TS (1/PWM_FREQ)

Similar to the Python implementation, the switching durations are directly utilized in the C-

based version of the compute_svpwm() function. The C version of the function is implemented as

follows:
void compute_svpwm(float Vref, float theta) {

 theta = normalize_angle(theta + PI_2); sector = theta/PI_3 + 1;

 float T1 = _SQRT3 * Vref/VDC * sinf(sector * PI_3 - theta);

 float T2 = _SQRT3 * Vref/VDC * sinf(theta - (sector - 1) * PI_3);

 float T0 = (1 - T1 - T2 > 0.0f) ? (1 - T1 - T2) : 0.0f; float Ta, Tb, Tc;

 switch (sector) {

 case 1: Ta = T1 + T2 + T0/2; Tb = T2 + T0/2; Tc = T0/2; break;

 case 2: Ta = T1 + T0/2; Tb = T1 + T2 + T0/2; Tc = T0/2; break;

 case 3: Ta = T0/2; Tb = T1 + T2 + T0/2; Tc = T2 + T0/2; break;

 case 4: Ta = T0/2; Tb = T1 + T0/2; Tc = T1 + T2 + T0/2; break;

 case 5: Ta = T2 + T0/2; Tb = T0/2; Tc = T1 + T2 + T0/2; break;

 case 6: Ta = T1 + T2 + T0/2; Tb = T0/2; Tc = T1 + T0/2; break;

 default: Ta = Tb = Tc = 0;

 }

 set_pwm_duty(Ta, Tb, Tc);

}

To configure the PWM output duty cycles according to the computed vector durations, the

set_pwm_duty() function is employed. This function translates the modulation times , and

 into corresponding pulse widths for each leg of the three-phase inverter.
float normalize_angle(float angle) {

 angle = fmodf(angle, _2PI); // Use fmodf for float type

 if (angle < 0.0f) angle += _2PI;

 return angle;

}

void set_pwm_duty(float Ta, float Tb, float Tc) {

 uint16_t arr = TIM1->ARR; TIM1->CCR1 = (uint16_t)(Ta * arr);

 TIM1->CCR2 = (uint16_t)(Tb * arr); TIM1->CCR3 = (uint16_t)(Tc * arr);

}

Within the main() function, the target mechanical speed specified in revolutions per minute

(RPM) is first converted into its corresponding electrical angular velocity, expressed in radians

per second. The electrical angular speed is given by , where is the

mechanical angular velocity and denotes the number of pole pairs. Subsequently, the electrical

angle increment per sampling period is computed based on this angular velocity. Inside the

infinite while(1) loop, this angle increment is repeatedly accumulated to update the electrical

angle used for generating the SVPWM waveforms. The main() function is written as follows:
float motor_speed; float Vref = 12.0;

volatile float theta = 0.0f; float omega_m,omega_e, dtheta; int sector=1;

int main(void) {

 GPIO_Init(); Timer1_Init(); motor_speed = 1500.0; omega_m = motor_speed/60.0;

 omega_e = omega_m * POLE_PAIRS; dtheta = 2.0 * PI * omega_e * TSAMP;

 while (1) {

 theta = normalize_angle(theta + dtheta); compute_svpwm(Vref, theta);

 delay_us(100);

 }

}

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 367 Email: jst@tnu.edu.vn

3.3. Experimental results

The SVPWM algorithm is experimentally validated using the hardware setup illustrated in

Figure 3. The system consists of a low-voltage brushless DC motor rated for 24 VDC operation,

which is powered through a dedicated DC supply. The motor is driven by a two-level, three-

phase voltage source inverter constructed using six IGBTs. Gate control signals for the IGBT

switches are generated using PWM outputs from the STM32G431 microcontroller, operating in

bare-metal mode to ensure precise timing and low-latency signal.

Figure 3. The experimental setup

The measured line-to-line voltages and phase currents are presented in Figure 4. As observed

from the figure, the experimental waveforms closely resemble those obtained from the Python-

based simulation, particularly under the same RL load conditions of resistance and 1 mH

inductance. However, a slight deviation is noted in the shape of the phase current waveforms,

which exhibit less sinusoidal characteristics in the experimental data.

(a) (b)

Figure 4. The real line-to-line voltages (a) and phase currents (b)

4. Conclusions and recommendations

This study presents a complete implementation of SVPWM using Python simulation and bare-

metal C programming on the STM32G431. The Python framework provides a clear and flexible

way to understand SVPWM principles, while waveform analysis confirms accurate sinusoidal

voltage generation. The C code, directly translated from Python, achieves precise PWM control

without HAL or CMSIS. Experimental results under load closely match simulations, validating

the method’s accuracy. Minor deviations in current waveforms are due to hardware non-idealities

not captured in the simulation.

TNU Journal of Science and Technology 230(14): 361 - 368

http://jst.tnu.edu.vn 368 Email: jst@tnu.edu.vn

Future work may focus on extending this framework to support multilevel inverters,

incorporate advanced features such as overmodulation and fault handling, and explore real-time

tuning of SVPWM parameters. Additionally, integrating feedback mechanisms and developing

closed-loop control strategies using sensor data would further enhance the applicability of this

system in precision motor control applications.

REFERENCES

[1] G. Ala, N. Campagna, M. Caruso, V. Castiglia, A. O. D. Tommaso, R. Miceli, C. Nevoloso, G.

Schettino, F. Viola, and M. Nguyen, “Stability of Microgrids: n pplication of Virtual Synchronous

Generator,” In Proc. International Conference on Engineering Research and Applications ’602, 2022,

pp. 873-880.

[2] H. T. Do, T.D. Vu, K. N. Nguyen, E. Semail, and M. T. Nguyen, “High Quality Torque for Five-Phase

Open-End Winding Non-sinusoidal PMSM Drives,” In Proc. International Conference on Engineering

Research and Applications ’944, 2024, pp. 9-19.

[3] B. Wu, High-power converters and AC drives. Wiley-IEEE Press, 2006.

[4] M. H. Rashid, Power electronics: devices, circuits, and applications. Pearson, 2014.

[5] H. Abu-Rub, A. Iqbal, and J. Guzinski, High performance control of AC drives with Matlab/Simulink

models. Wiley, 2012.

[6] M. M. Gaballah, “Design and implementation of space vector PWM inverter based on a low cost

microcontroller,” Arabian Journal for Science and Engineering, vol. 38, pp. 3059–3070, 2013.

[7] H. Zhang, Y. Meng, L. Ning, Y. Zou, X. Wang, and X. Wang, “Fast and simple space vector

modulationmethod for multilevel converters,” IET Power Electronics, vol. 13, pp. 14–22, 2020.

[8] A. Khaliq, S. A. R. Kashif, F. Ahmad, M. Anwar, Q. Shaheen, R. Akhtar, M. A. Shah, and A.

Abdelmaboud, “Indirect vector control of linear induction motors using space vector pulse width

modulation,” Computers, Materials and Continua, vol. 74, pp. 6263–6287, 2022.

[9] L. Tiitinen, M. Hinkkanen, and L. Harnefors, “Design framework for sensorless control of

synchronous machine drives,” IEEE Transactions on Industrial Electronics, vol. 72, pp. 1379–1390,

2025.

[10] Z. Liu, W. Zhang, C. Li, X. Wang, and H. Qin, “Improved virtual SVPWM algorithm for CMV

reduction and NPV oscillationelimination in three-level NPC inverter,” International Journal of

Electrical Power and Energy Systems, vol. 155, Part A, January 2024, Art. no. 109533, doi:

10.1016/j.ijepes.2023.109533.

[11] L. Tiitinen, M. Hinkkanen, and L. Harnefors, “Sensorless flux-vector control framework: An

extension forinduction machines,” IEEE Transactions on Industrial Electronics, vol. 99, pp. 1-6,

2025, doi: 10.1109/TIE.2025.3559958.

[12] V. Kumar, R. K. Behera, D. Joshi, and R. Bansal, Power electronics, drives, and advanced

applications. CRC Press, 2020.

[13] N. P. Quang and J.-A. Dittrich, Vector control of three-phase AC machines: System development in the

practice. Springer Berlin Heidelberg, 2008.

[14] STMicroelectronics, “STM32G4 series advanced RM-based 32-bit MCUs,” 2020. [Online].

Available: https://www.farnell.com/datasheets/3182254.pdf. [Accessed Jun. 10, 2025].

[15] STMicroelectronics, “STM32G431x6 STM32G431x8 STM32G431xB Datasheets,” 2019. [Online].

Available: https://www.st.com/resource/en/datasheet/stm32g431c6.pdf. [Accessed Jun. 10, 2025].

