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Received:  24/6/2025 This paper presents a detailed approach to developing and validating the 

space-vector pulse width modulation technique using the Python 

programming environment. The proposed simulation framework is 

implemented entirely in Python scripts and models a two-level, three-phase 

voltage-source inverter. It includes essential functions such as Clarke and 

Park transformations, sector determination, and duty cycle computation 

based on vector time decomposition. Unlike traditional simulation tools 

that rely on graphical user interfaces, the script-based method offers greater 

transparency and control over algorithmic implementation, enabling users 

to better understand each computational step involved in pulse generation. 

Although this approach may be less familiar to users accustomed to 

commercial block-diagram environments, it enhances comprehension of 

modulation principles and inverter behavior. Additionally, the Python script 

is designed with portability in mind, allowing straightforward conversion 

into embedded C code for real-time execution on STM32G431 

microcontrollers. Experimental results confirm that the proposed method 

offers fast simulation times and reduced code complexity compared to 

conventional simulation tool chains.  
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  24/6/2025 Bài báo trình bày một phương pháp tiếp cận để phát triển và kiểm chứng kỹ 

thuật điều chế vectơ không gian trong môi trường lập trình Python. Phần mô 

phỏng được triển khai hoàn toàn bằng tập lệnh Python để mô hình hóa một bộ 

biến đổi nguồn áp ba pha, hai cấp. Trình mô phỏng bao gồm các chức năng 

cơ bản như phép biến đổi Clarke và Park, xác định các sector và tính các chu 

kỳ nhiệm vụ dựa trên phân tích các vectơ theo thời gian. Không giống như 

các công cụ mô phỏng truyền thống dựa trên giao diện đồ họa, phương pháp 

dựa trên tập lệnh cung cấp tính minh bạch và khả năng kiểm soát tốt hơn đối 

với việc triển khai thuật toán, cho phép người dùng hiểu rõ hơn từng bước 

tính toán liên quan đến việc tạo xung. Mặc dù phương pháp tiếp cận này có 

thể ít quen thuộc hơn đối với người dùng đã quen với các phần mềm thương 

mại sử dụng các sơ đồ khối, nhưng nó giúp tăng cường khả năng hiểu rõ các 

nguyên tắc điều chế và hành vi của bộ biến tần. Ngoài ra, tập lệnh Python 

được thiết kế có tính đến tính tương thích, cho phép chuyển đổi trực tiếp 

thành mã C nhúng để thực thi trên vi điều khiển STM32G431 trong thời gian 

thực. Kết quả thử nghiệm xác nhận rằng phương pháp được đề xuất cung cấp 

thời gian mô phỏng nhanh và giảm độ phức tạp của mã so với chuỗi công cụ 

mô phỏng thông thường. 
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1. Introduction 

Three-phase inverters are widely used in power electronics to convert direct current (DC) into 

alternating current (AC) with controllable amplitude and frequency, making them essential in 

motor drives, renewable energy systems, and industrial automation, and power converters [1], 

[2]. The quality of the output waveform generated by an inverter is determined by the switching 

states of its six semiconductor switches, which directly control the synthesis of the AC voltage. 

Several modulation techniques have been developed, including the six-step inverter method, 

hysteresis current control, sinusoidal pulse width modulation (SPWM), and space vector pulse 

width modulation (SVPWM), each offering specific trade-offs in complexity, efficiency, and 

waveform quality [3] – [5].  

SVPWM is a fundamental control strategy widely employed in three-phase voltage-source 

inverters for industrial drives, renewable energy systems, and embedded power applications. It 

provides efficient and continuous modulation of output voltage magnitude, frequency, and phase 

angle, resulting in superior performance compared to traditional sinusoidal pulse-width 

modulation (PWM) techniques. While multilevel SVPWM methods have been developed to 

improve output waveform quality and reduce total harmonic distortion, the two-level, three-phase 

(2L3P) inverter remains the pedagogical and practical baseline due to its hardware simplicity, 

robust performance, and mathematically tractable control algorithm [6] – [8]. In practical 

applications, three major performance criteria must be addressed: harmonic distortion, switching 

frequency, and the effective utilization of the DC link voltage. Minimizing harmonic content in 

the output waveform is crucial, as lower harmonics improve the efficiency and dynamic 

performance of motor drive systems and reduce the need for bulky filtering components. 

Increasing the switching frequency typically enhances the smoothness of the output current and 

improves dynamic response. However, it also results in higher switching losses and thermal 

stress, and is limited by the physical switching speed and dead-time constraints of the 

semiconductor devices [9] – [11]. 

Despite the extensive theoretical and simulation-based literature on SVPWM, many published 

works offer limited discussion on the link between simulation and practical implementation 

details, particularly for real-time embedded systems. As a result, this paper presents a 

comprehensive approach that transitions from well-established simulation environments to a 

performance-validated implementation of SVPWM, suitable for both academic use and real-

world embedded control systems. The SVPWM will be implemented on a 32-bit ARM Cortex-

M4-based microcontroller. This work serves as a practical reference for researchers and 

educators seeking to bridge the gap between SVPWM theory and its deployment on modern 

microcontroller platforms. 

The rest of this paper is organized as follows. Section 2 presents the three-phase voltage 

source inverter and the SVPWM technique, including its principle and a Python-based simulation 

of the SVPWM strategy. The simulation and experimental results from the implementation of 

SVPWM on STM32 controllers are addressed in Section 3. Finally, the conclusions and future 

directions are provided in Section 4. 

2. Three-phase voltage source inverter and SVPWM technique 

2.1. Principle of space vector modulation 

Let the three-phase sinusoidal voltage component be            ,         (     
  

 
), 

        (     
  

 
), where    is the stator angular frequency,    is the amplitude of the 

supply voltage. The SVPWM technique is aimed at swiftly estimating the reference voltage vector 

     in the    coordinate by combining the switching states representing the fundamental space 

vectors. Vectors     ,     ,     ,     ,     , and      represent varied non-zero vectors. The two 
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vectors,      and     , are known as null (or zero) vectors since they are derived when all windings 

are on the positive or negative terminals of the DC bus. The eight base vectors separated by a 60-

degree phase difference from each other are formed in a hexagonal diagram in stator-fixed    

coordinates. The six base vectors shape the hexagon with six sectors       as shown in Figure 1a. 

The two specific vectors,      and     , are plotted at the origin of the hexagon. 

 

 

 

 

(a) (b) 

Figure 1. The standard voltage vectors (a) and the realization of an arbitrary voltage vector from two 

boundary vectors (b) 

Now, let us assume that the vector to be realized,     , is located in the sector   , the area 

between the standard vectors      and      as shown in Figure 1b. The reference vector      can 

be implemented by applying vector    for a specified time    and vector    for a specified time 

  . During the remaining time of   , the applied voltage should be imposed to zero by applying 

the null vector      (or     ). The time for the null vector is denoted by    (or   ). The necessary 

times   ,   , and     (or   ) can be calculated as follows [12], [13]. 
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The realization of voltage vector      can now be represented as follows: 
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Switching durations   , and    at any sector   = 1 to 6 can be expressed as [8-9] 
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where     √  
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  is called the magnitude modulation index, and       
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2.2. A Python-based simulation of the SVPWM strategy 

To initiate the simulation and numerical computation process, the open-source Python 

libraries NumPy and SciPy are imported. The NumPy library provides essential tools for efficient 

numerical operations, including array manipulation, linear algebra, and mathematical functions, 

which are fundamental for vector and matrix computations in control algorithms. The SciPy 

library complements this by offering a wide range of scientific computing capabilities, such as 

signal processing, optimization, and integration routines. These libraries form the computational 

backbone of the simulation environment and are imported as shown below: 
import numpy as np 

from scipy.signal import lfilter 
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Next, we declare necessary constants and parameters as follows: 
# Constants 

PI = np.pi; PI_2 = PI/2; PI_3 = PI/3; _SQRT3 = np.sqrt(3); Vdc = 24.0 

# User-defined parameters 

f_pwm = 10e3              # PWM frequency in Hz 

T_sample = 1e-6           # Sampling time (s) 

electrical_freq = 50      # Electrical frequency (Hz) 

dead_time = 2e-6          # Dead-time in seconds 

fs = 1e6                  # Simulation frequency (1 MHz) 

# Derived values 

Ts = 1/f_pwm 

omega_el = 2 * PI * electrical_freq 

total_time = 2/electrical_freq 

time_array = np.arange(0, total_time, T_sample) 
In addition to the core space vector modulation logic, the implementation includes several 

auxiliary functions that support accurate and efficient signal generation. Two of the principal 

supporting functions are detailed as follows: 

 The normalize_angle() function ensures that the electrical angle remains bounded within a 

fundamental    interval. This normalization is critical for maintaining the correct orientation of 

the rotating reference frame (the    frame) with respect to the stationary    coordinate system.  

 The insert_dead_time()function is designed to introduce a non-overlapping delay, known as 

dead-time, between the switching events of complementary PWM signals. The function inserts a 

programmable delay at both the rising and falling edges of the main PWM signal, ensuring that 

one switch is fully turned off before its complementary switch is turned on.  
def normalize_angle(angle): 

    a = np.fmod(angle, 2 * PI) 

    return a if a >= 0 else (a + 2 * PI) 

def insert_dead_time(main_pwm, T_sample, dead_time): 

    pwm_len = len(main_pwm); dead_samples = int(np.ceil(dead_time / T_sample)) 

    complement_pwm = 1 - main_pwm; i = 1; pwm_nt = complement_pwm.copy() 

    for k in range(1, pwm_len): 

        if k>=i: 

            i = k; if pwm_nt[i] == 0 and pwm_nt[i - 1] == 1: 

                complement_pwm[i:i+dead_samples] = 1; i = i+dead_samples 

            elif pwm_nt[i] == 1 and pwm_nt[i - 1] == 0:  # Rising edge 

                complement_pwm[i-dead_samples:i] = 1 

    return complement_pwm 

The switching durations derived in Equations (3), (4), and (5), corresponding respectively to 

the active vector durations       , and the zero vector duration   , are directly applied in the 

implementation of the compute_svpwm() function. Within this function, these durations are used 

to determine the precise time intervals during which each inverter switch should be activated 

within one PWM cycle. This implementation ensures that the reference voltage vector is 

synthesized accurately by modulating the duty cycles of the three-phase output signals. The 

correct computation and application of       , and    are essential for generating the desired 

output voltage while maintaining the advantages of SVPWM. The compute_svpwm() function is 

written as follows: 
def compute_svpwm(Vref, angle_el): 

    angle_el = normalize_angle(angle_el + PI_2) 

    sector = int(np.floor(angle_el / PI_3)) + 1 

    T1 = Ts * _SQRT3 * Vref/Vdc * np.sin(sector * PI_3 - angle_el)  

    T2 = Ts * _SQRT3 * Vref/Vdc * np.sin(angle_el - (sector - 1) * PI_3) 

    T0 = max(0.0, Ts - T1 - T2) 

    if sector == 1: Ta = T1 + T2 + T0/2; Tb = T2 + T0/2; Tc = T0/2 

    elif sector == 2: Ta = T1 + T0/2; Tb = T1 + T2 + T0/2; Tc = T0/2 

    elif sector == 3: Ta = T0/2; Tb = T1 + T2 + T0/2; Tc = T2 + T0/2 

    elif sector == 4: Ta = T0/2; Tb = T1 + T0/2; Tc = T1 + T2 + T0/2 
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    elif sector == 5: Ta = T2 + T0/2; Tb = T0/2; Tc = T1 + T2 + T0/2 

    elif sector == 6: Ta = T1 + T2 + T0/2; Tb = T0/2; Tc = T1 + T0/2 

    else: Ta = Tb = Tc = 0 

    return T1, T2, T0, Ta, Tb, Tc 

3. Simulation results and implementation 

3.1. Simulation results 

  
(a) (b) 

Figure 2. Line-to-line voltages    ,    ,     and phase currents   ,   ,    with RL load 

The waveforms of the line-to-line voltages    ,    , and     , along with their corresponding 

filtered signals, are illustrated in Figure 2a. As observed from the figure, the unfiltered voltages 

exhibit the characteristic stepped pattern of SVPWM, resulting from the discrete switching states 

of the inverter. After applying a low-pass filter to these signals, the fundamental components 

emerge clearly, revealing sinusoidal waveforms with minimal distortion. Figure 2b presents the 

measured waveforms of the three-phase currents   ,   , and    under a balanced load consisting of 

a      resistor and a 1 mH inductor per phase. As illustrated in the figure, the phase currents 

exhibit smooth, nearly sinusoidal waveforms with minimal distortion, indicating that the 

SVPWM strategy effectively minimizes switching harmonics and delivers high-quality output.  

3.2. The implementation of SVPWM on STM32 controllers 

To demonstrate the implementation of the SVPWM on the STM32G431 microcontroller, the 

corresponding Python code was translated into C language. The resulting program operates in a 

bare-metal environment, meaning it does not rely on the Hardware Abstraction Layer (HAL), 

Low-Layer (LL), or CMSIS libraries provided by STMicroelectronics. Instead, all peripheral 

control is performed through direct manipulation of memory-mapped registers. This low-level 

approach enables precise control over timing, system performance, and hardware behavior. 

In this paper, we use Timer 1 working in center-aligned mode with dead-time insertion to 

implement the SVPWM algorithm. Suppose the clock frequency supplied to Timer 1 is      
    MHz and the PWM frequency is        kHz. Then, the ARR (auto-reload value) in the 

center-aligne mode is calculated as [14], [15]: 

 RR  
    

       (PSC  )
 
       

       
        (6) 

where the prescaler (PSC) value of the timer is set to 0. Furthermore, the dead-time is chosen of 

    . First, we define the following constants 
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#define VDC         24.0f 

#define POLE_PAIRS  4                   // Number of pole pairs 

#define TSAMP       0.0001f             // Sampling time 100~us step 

#define F_CPU       170000000UL 

#define PWM_FREQ    5000 

#define PWM_PERIOD  (F_CPU/PWM_FREQ/2)  // Center-aligned PWM 

#define TS          (1/PWM_FREQ) 

Similar to the Python implementation, the switching durations are directly utilized in the C-

based version of the compute_svpwm() function. The C version of the function is implemented as 

follows: 
void compute_svpwm(float Vref, float theta) { 

  theta = normalize_angle(theta + PI_2); sector = theta/PI_3 + 1; 

  float T1 = _SQRT3 * Vref/VDC * sinf(sector * PI_3 - theta); 

  float T2 = _SQRT3 * Vref/VDC * sinf(theta - (sector - 1) * PI_3); 

  float T0 = (1 - T1 - T2 > 0.0f) ? (1 - T1 - T2) : 0.0f; float Ta, Tb, Tc; 

  switch (sector) { 

    case 1: Ta = T1 + T2 + T0/2; Tb = T2 + T0/2; Tc = T0/2; break; 

    case 2: Ta = T1 + T0/2; Tb = T1 + T2 + T0/2; Tc = T0/2; break; 

    case 3: Ta = T0/2; Tb = T1 + T2 + T0/2; Tc = T2 + T0/2; break; 

    case 4: Ta = T0/2; Tb = T1 + T0/2; Tc = T1 + T2 + T0/2; break; 

    case 5: Ta = T2 + T0/2; Tb = T0/2; Tc = T1 + T2 + T0/2; break; 

    case 6: Ta = T1 + T2 + T0/2; Tb = T0/2; Tc = T1 + T0/2; break; 

    default: Ta = Tb = Tc = 0; 

  } 

  set_pwm_duty(Ta, Tb, Tc); 

} 

To configure the PWM output duty cycles according to the computed vector durations, the 

set_pwm_duty() function is employed. This function translates the modulation times       , and 

   into corresponding pulse widths for each leg of the three-phase inverter.  
float normalize_angle(float angle) { 

  angle = fmodf(angle, _2PI);         // Use fmodf for float type 

  if (angle < 0.0f) angle += _2PI; 

  return angle; 

} 

void set_pwm_duty(float Ta, float Tb, float Tc) { 

  uint16_t arr = TIM1->ARR; TIM1->CCR1 = (uint16_t)(Ta * arr);  

  TIM1->CCR2 = (uint16_t)(Tb * arr); TIM1->CCR3 = (uint16_t)(Tc * arr); 

} 

Within the main() function, the target mechanical speed specified in revolutions per minute 

(RPM) is first converted into its corresponding electrical angular velocity, expressed in radians 

per second. The electrical angular speed    is given by           , where    is the 

mechanical angular velocity and   denotes the number of pole pairs. Subsequently, the electrical 

angle increment per sampling period is computed based on this angular velocity. Inside the 

infinite while(1) loop, this angle increment is repeatedly accumulated to update the electrical 

angle used for generating the SVPWM waveforms. The main() function is written as follows: 
float motor_speed; float Vref = 12.0; 

volatile float theta = 0.0f; float omega_m,omega_e, dtheta; int sector=1; 
 

int main(void) { 

  GPIO_Init(); Timer1_Init(); motor_speed = 1500.0; omega_m = motor_speed/60.0; 

  omega_e = omega_m * POLE_PAIRS; dtheta = 2.0 * PI * omega_e * TSAMP; 

  while (1) { 

    theta = normalize_angle(theta + dtheta); compute_svpwm(Vref, theta); 

    delay_us(100); 

  }   

} 
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3.3. Experimental results 

The SVPWM algorithm is experimentally validated using the hardware setup illustrated in 

Figure 3. The system consists of a low-voltage brushless DC motor rated for 24 VDC operation, 

which is powered through a dedicated DC supply. The motor is driven by a two-level, three-

phase voltage source inverter constructed using six IGBTs. Gate control signals for the IGBT 

switches are generated using PWM outputs from the STM32G431 microcontroller, operating in 

bare-metal mode to ensure precise timing and low-latency signal.  

 

Figure 3. The experimental setup 

The measured line-to-line voltages and phase currents are presented in Figure 4. As observed 

from the figure, the experimental waveforms closely resemble those obtained from the Python-

based simulation, particularly under the same RL load conditions of       resistance and 1 mH 

inductance. However, a slight deviation is noted in the shape of the phase current waveforms, 

which exhibit less sinusoidal characteristics in the experimental data.  

  
(a) (b) 

Figure 4. The real line-to-line voltages (a) and phase currents (b) 

4. Conclusions and recommendations 

This study presents a complete implementation of SVPWM using Python simulation and bare-

metal C programming on the STM32G431. The Python framework provides a clear and flexible 

way to understand SVPWM principles, while waveform analysis confirms accurate sinusoidal 

voltage generation. The C code, directly translated from Python, achieves precise PWM control 

without HAL or CMSIS. Experimental results under load closely match simulations, validating 

the method’s accuracy. Minor deviations in current waveforms are due to hardware non-idealities 

not captured in the simulation. 



TNU Journal of Science and Technology 230(14): 361 - 368 

 

http://jst.tnu.edu.vn                                                  368                                                 Email: jst@tnu.edu.vn 

Future work may focus on extending this framework to support multilevel inverters, 

incorporate advanced features such as overmodulation and fault handling, and explore real-time 

tuning of SVPWM parameters. Additionally, integrating feedback mechanisms and developing 

closed-loop control strategies using sensor data would further enhance the applicability of this 

system in precision motor control applications. 
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