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1. Introduction

Three-phase inverters are widely used in power electronics to convert direct current (DC) into
alternating current (AC) with controllable amplitude and frequency, making them essential in
motor drives, renewable energy systems, and industrial automation, and power converters [1],
[2]. The quality of the output waveform generated by an inverter is determined by the switching
states of its six semiconductor switches, which directly control the synthesis of the AC voltage.
Several modulation techniques have been developed, including the six-step inverter method,
hysteresis current control, sinusoidal pulse width modulation (SPWM), and space vector pulse
width modulation (SVPWM), each offering specific trade-offs in complexity, efficiency, and
waveform quality [3] - [5].

SVPWM is a fundamental control strategy widely employed in three-phase voltage-source
inverters for industrial drives, renewable energy systems, and embedded power applications. It
provides efficient and continuous modulation of output voltage magnitude, frequency, and phase
angle, resulting in superior performance compared to traditional sinusoidal pulse-width
modulation (PWM) techniques. While multilevel SVPWM methods have been developed to
improve output waveform quality and reduce total harmonic distortion, the two-level, three-phase
(2L3P) inverter remains the pedagogical and practical baseline due to its hardware simplicity,
robust performance, and mathematically tractable control algorithm [6] — [8]. In practical
applications, three major performance criteria must be addressed: harmonic distortion, switching
frequency, and the effective utilization of the DC link voltage. Minimizing harmonic content in
the output waveform is crucial, as lower harmonics improve the efficiency and dynamic
performance of motor drive systems and reduce the need for bulky filtering components.
Increasing the switching frequency typically enhances the smoothness of the output current and
improves dynamic response. However, it also results in higher switching losses and thermal
stress, and is limited by the physical switching speed and dead-time constraints of the
semiconductor devices [9] — [11].

Despite the extensive theoretical and simulation-based literature on SVPWM, many published
works offer limited discussion on the link between simulation and practical implementation
details, particularly for real-time embedded systems. As a result, this paper presents a
comprehensive approach that transitions from well-established simulation environments to a
performance-validated implementation of SVPWM, suitable for both academic use and real-
world embedded control systems. The SVPWM will be implemented on a 32-bit ARM Cortex-
M4-based microcontroller. This work serves as a practical reference for researchers and
educators seeking to bridge the gap between SVPWM theory and its deployment on modern
microcontroller platforms.

The rest of this paper is organized as follows. Section 2 presents the three-phase voltage
source inverter and the SVPWM technique, including its principle and a Python-based simulation
of the SVPWM strategy. The simulation and experimental results from the implementation of
SVPWM on STM32 controllers are addressed in Section 3. Finally, the conclusions and future
directions are provided in Section 4.

2. Three-phase voltage source inverter and SVPWM technique

2.1. Principle of space vector modulation

Let the three-phase sinusoidal voltage component be V;, = V;,, sin w;t, V;,, = V,, sin (wst - 2?”)
Vi, = Vpy, sin (wst - 4?”) where ws is the stator angular frequency, 1}, is the amplitude of the
supply voltage. The SVPWM technique is aimed at swiftly estimating the reference voltage vector
Vyer IN the af coordinate by combining the switching states representing the fundamental space

vectors. Vectors v149, V110, Yo10: Yo11, Yoo1, @nd v represent varied non-zero vectors. The two
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Vectors, vy and vy14, are known as null (or zero) vectors since they are derived when all windings
are on the positive or negative terminals of the DC bus. The eight base vectors separated by a 60-
degree phase difference from each other are formed in a hexagonal diagram in stator-fixed af
coordinates. The six base vectors shape the hexagon with six sectors S, - S, as shown in Figure 1a.
The two specific vectors, 17?000 and v, 4, are plotted at the origin of the hexagon.

Y010 LD

v01 U101
(a) (b)
Figure 1. The standard voltage vectors (a) and the realization of an arbitrary voltage vector from two
boundary vectors (b)

Now, let us assume that the vector to be realized, v,.f, is located in the sector Sy, the area
between the standard vectors v;4, and v;4, as shown in Figure 1b. The reference vector v, can
be implemented by applying vector v, for a specified time T; and vector v, for a specified time
T,. During the remaining time of T, the applied voltage should be imposed to zero by applying
the null vector vy (Or v1141). The time for the null vector is denoted by T, (or T,). The necessary
times Ty, T,, and T, (or T,) can be calculated as follows [12], [13].

T1=Ts |V1|,T2=TSM1TO:T7=TS_TI_TZ- (1)
|[vrerl |[vrerl
The realization of voltage vector v,.., can now be represented as follows:
T. T. Ts — (Ty+ Ty)
Vref = Fi V100 + ;z V110 + STSIZ Vooo (07 V111) 2)
Switching durations T;, and T, at any sector 9,,= 1 to 6 can be expressed as [8-9]
|vref| . T . /3 (3)
Ty = Ts\3 » 51n(z9n§ - 9) = Ty m, 51n(19n§ — 9)
[vrer| . (m o @
T, = TsV3 #jc sm(§ - HT) =Tym, sm(§ - HT)
To=Ts— (T1 + T3) )

where m,, = V3 lvvr—efl is called the magnitude modulation index, and 8, = 19n§ - 0.

dc

2.2. A Python-based simulation of the SVPWM strategy

To initiate the simulation and numerical computation process, the open-source Python
libraries NumPy and SciPy are imported. The NumPy library provides essential tools for efficient
numerical operations, including array manipulation, linear algebra, and mathematical functions,
which are fundamental for vector and matrix computations in control algorithms. The SciPy
library complements this by offering a wide range of scientific computing capabilities, such as
signal processing, optimization, and integration routines. These libraries form the computational

backbone of the simulation environment and are imported as shown below:
import numpy as np
from scipy.signal import Ifilter
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Next, we declare necessary constants and parameters as follows:
# Constants
Pl = np.pi; PI_2 =PI1/2; PI_3 =PI1/3; _SQRT3 = np.sqrt(3); Vdc = 24.0
# User-defined parameters

f_pwm = 10e3 # PWM frequency in Hz
T_sample = 1e-6 # Sampling time (s)
electrical_freq =50  # Electrical frequency (Hz)
dead_time = 2e-6 # Dead-time in seconds

fs = 1e6 # Simulation frequency (1 MHz)
# Derived values

Ts = 1/f_pwm

omega_el =2 * Pl * electrical_freq
total_time = 2/electrical_freq
time_array = np.arange(0, total_time, T_sample)

In addition to the core space vector modulation logic, the implementation includes several
auxiliary functions that support accurate and efficient signal generation. Two of the principal
supporting functions are detailed as follows:

¢ The normalize_angle() function ensures that the electrical angle remains bounded within a
fundamental 27 interval. This normalization is critical for maintaining the correct orientation of
the rotating reference frame (the dgq frame) with respect to the stationary a8 coordinate system.

¢ The insert_dead_time()function is designed to introduce a non-overlapping delay, known as
dead-time, between the switching events of complementary PWM signals. The function inserts a
programmable delay at both the rising and falling edges of the main PWM signal, ensuring that
one switch is fully turned off before its complementary switch is turned on.

def normalize_angle(angle):
a = np.fmod(angle, 2 * PI)
return aifa>=0else (a + 2 * PI)
def insert_dead_time(main_pwm, T_sample, dead_time):
pwm_len = len(main_pwm); dead_samples = int(np.ceil(dead_time / T_sample))
complement_pwm =1 - main_pwm; i = 1; pwm_nt = complement_pwm.copy()
for k in range(1, pwm_len):
if k>=i:
i =k; if pwm_nt[i] == 0 and pwm_nt[i - 1] == 1:
complement_pwml[i:i+dead_samples] = 1; i = i+dead_samples
elif pwm_nt[i] == 1 and pwm_nt[i - 1] == 0: # Rising edge
complement_pwm[i-dead_samples:i] =1
return complement_pwm

The switching durations derived in Equations (3), (4), and (5), corresponding respectively to
the active vector durations T;, T,, and the zero vector duration T, are directly applied in the
implementation of the compute_svpwm() function. Within this function, these durations are used
to determine the precise time intervals during which each inverter switch should be activated
within one PWM cycle. This implementation ensures that the reference voltage vector is
synthesized accurately by modulating the duty cycles of the three-phase output signals. The
correct computation and application of T;, T,, and T, are essential for generating the desired
output voltage while maintaining the advantages of SVPWM. The compute_svpwm() function is
written as follows:

def compute_svpwm(Vref, angle_el):
angle_el = normalize_angle(angle_el + P1_2)
sector = int(np.floor(angle_el / PI_3)) + 1
T1=Ts*_SQRT3 * Vref/Vdc * np.sin(sector * P1_3 - angle_el)
T2 =Ts*_SQRT3 * Vref/Vdc * np.sin(angle_el - (sector - 1) * P1_3)
TO = max(0.0, Ts - T1 - T2)
ifsector==1: Ta=T1+ T2+ T0/2; Tb=T2+ T0/2; Tc =TO0/2
elifsector==2: Ta=T1+T0/2; Tb=T1+ T2+ T0/2; Tc =T0/2
elif sector==3: Ta=T0/2; Tb=T1+ T2+ T0/2; Tc=T2 + T0/2
elif sector==4: Ta=TO0/2; Tb=T1+ T0/2; Tc=T1+ T2 + T0/2
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elif sector==5: Ta=T2+ T0/2; Tb=TO0/2; Tc=T1 + T2 + T0/2
elifsector==6: Ta=T1+ T2+ T0/2; Tbo=T0/2; Tc=T1 + T0/2
else: Ta=Th=Tc=0

return T1, T2, TO, Ta, Th, Tc

3. Simulation results and implementation

3.1. Simulation results

_ Line-to-line voltage Vab Phase currents with RL load

—

0012 0014 0016 0018 002 0022 0024 0026 0028 003 0012 0014 0016 0018 002 0022 0024 0026 0028 0.03
Time (s) Time (s)
1

(@) (b)

Figure 2. Line-to-line voltages V,,, V., V., and phase currents i,, iy, i, with RL load

The waveforms of the line-to-line voltages Vy;,, V., and V,,, along with their corresponding
filtered signals, are illustrated in Figure 2a. As observed from the figure, the unfiltered voltages
exhibit the characteristic stepped pattern of SVPWM, resulting from the discrete switching states
of the inverter. After applying a low-pass filter to these signals, the fundamental components
emerge clearly, revealing sinusoidal waveforms with minimal distortion. Figure 2b presents the
measured waveforms of the three-phase currents i, i, and i, under a balanced load consisting of
a 0.5Q resistor and a 1 mH inductor per phase. As illustrated in the figure, the phase currents
exhibit smooth, nearly sinusoidal waveforms with minimal distortion, indicating that the
SVPWM strategy effectively minimizes switching harmonics and delivers high-quality output.

3.2. The implementation of SVPWM on STM32 controllers

To demonstrate the implementation of the SVPWM on the STM32G431 microcontroller, the
corresponding Python code was translated into C language. The resulting program operates in a
bare-metal environment, meaning it does not rely on the Hardware Abstraction Layer (HAL),
Low-Layer (LL), or CMSIS libraries provided by STMicroelectronics. Instead, all peripheral
control is performed through direct manipulation of memory-mapped registers. This low-level
approach enables precise control over timing, system performance, and hardware behavior.

In this paper, we use Timer 1 working in center-aligned mode with dead-time insertion to
implement the SVPWM algorithm. Suppose the clock frequency supplied to Timer 1 is frecx =
170 MHz and the PWM frequency is fpya = 5 kHz. Then, the ARR (auto-reload value) in the
center-aligne mode is calculated as [14], [15]:

frek 170 x 10°
" 2% fpyy X (PSC+1)  2x10x53
where the prescaler (PSC) value of the timer is set to 0. Furthermore, the dead-time is chosen of
2 us. First, we define the following constants

ARR = 17,000 (6)
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#define VDC 24.0f

#define POLE_PAIRS 4 /I Number of pole pairs

#define TSAMP  0.0001f /I Sampling time 100~us step

#define F_CPU  170000000UL

#define PWM_FREQ 5000

#define PWM_PERIOD (F_CPU/PWM_FREQ/2) // Center-aligned PWM
#define TS (L/PWM_FREQ)

Similar to the Python implementation, the switching durations are directly utilized in the C-
based version of the compute_svpwm() function. The C version of the function is implemented as

follows:
void compute_svpwm(float Vref, float theta) {

theta = normalize_angle(theta + P1_2); sector = theta/PI1_3 + 1;

float T1 = _SQRT3 * Vref/VDC * sinf(sector * P1_3 - theta);

float T2 = _SQRT3 * Vref/VDC * sinf(theta - (sector - 1) * P1_3);

float TO=(1- T1-T2>0.0f) ? (1 - T1 - T2) : 0.0f; float Ta, Th, Tc;

switch (sector) {
case 1: Ta=T1+ T2+ T0/2; Tb=T2 + T0/2; Tc = T0/2; break;
case 2: Ta=T1+T0/2; Tb=T1+ T2 + T0/2; Tc = TO/2; break;
case 3: Ta=TO0/2; Tb=T1+ T2 + T0/2; Tc = T2 + T0/2; break;
case 4: Ta=TO0/2; Tb =T1 + TO/2; Tc =T1 + T2 + T0/2; break;
case 5: Ta=T2 + T0/2; Tb =TO/2; Tc =T1 + T2 + TO/2; break;
case 6: Ta=T1+ T2+ T0/2; Tb=T0/2; Tc = T1 + TO/2; break;
default: Ta=Th =Tc =0;

}
set_pwm_duty(Ta, Tb, Tc);

To configure the PWM output duty cycles according to the computed vector durations, the
set_pwm_duty() function is employed. This function translates the modulation times T;, T,, and
T, into corresponding pulse widths for each leg of the three-phase inverter.

float normalize_angle(float angle) {
angle = fmodf(angle, _2PI); /I Use fmodf for float type
if (angle < 0.0f) angle += _2PI;
return angle;

void set_pwm_duty(float Ta, float Tb, float Tc) {
uintl6_t arr = TIM1->ARR; TIM1->CCR1 = (uint16_t)(Ta * arr);
TIM1->CCR2 = (uint16_t)(Tb * arr); TIM1->CCR3 = (uint16_t)(Tc * arr);

Within the main() function, the target mechanical speed specified in revolutions per minute
(RPM) is first converted into its corresponding electrical angular velocity, expressed in radians
per second. The electrical angular speed w, is given by w, = w,, ' p, where w,, is the
mechanical angular velocity and p denotes the number of pole pairs. Subsequently, the electrical
angle increment per sampling period is computed based on this angular velocity. Inside the
infinite while(1) loop, this angle increment is repeatedly accumulated to update the electrical
angle used for generating the SVPWM waveforms. The main() function is written as follows:

float motor_speed; float Vref = 12.0;
volatile float theta = 0.0f; float omega_m,omega_e, dtheta; int sector=1;
int main(void) {
GPIO_Init(); Timerl_Init(); motor_speed = 1500.0; omega_m = motor_speed/60.0;
omega_e =omega_m * POLE_PAIRS; dtheta = 2.0 * Pl * omega_e * TSAMP;
while (1) {
theta = normalize_angle(theta + dtheta); compute_svpwm(Vref, theta);
delay_us(100);

}
}
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3.3. Experimental results

The SVPWM algorithm is experimentally validated using the hardware setup illustrated in
Figure 3. The system consists of a low-voltage brushless DC motor rated for 24 VDC operation,
which is powered through a dedicated DC supply. The motor is driven by a two-level, three-
phase voltage source inverter constructed using six IGBTs. Gate control signals for the IGBT
switches are generated using PWM outputs from the STM32G431 microcontroller, operating in
bare-metal mode to ensure precise timing and low-latency signal.

Figure 3. The experimental setup

The measured line-to-line voltages and phase currents are presented in Figure 4. As observed
from the figure, the experimental waveforms closely resemble those obtained from the Python-
based simulation, particularly under the same RL load conditions of 0.5 Q resistance and 1 mH
inductance. However, a slight deviation is noted in the shape of the phase current waveforms,
which exhibit less sinusoidal characteristics in the experimental data.

Line-to-line voltage Vab Phase currents with RL load

. .
1.485 1.49 1.495
Line-to-line voltage Vbc

1.485 1.49 1.495
Line-todine voltage Vca
T T T

1475 148 1485 149 1485 13 1.505 1351 1635 164 1645 165 1655 166 1665 167 1675

fime (®) Time (s)
(@) (b)

Figure 4. The real line-to-line voltages (a) and phase currents (b)

4. Conclusions and recommendations

This study presents a complete implementation of SVPWM using Python simulation and bare-
metal C programming on the STM32G431. The Python framework provides a clear and flexible
way to understand SVPWM principles, while waveform analysis confirms accurate sinusoidal
voltage generation. The C code, directly translated from Python, achieves precise PWM control
without HAL or CMSIS. Experimental results under load closely match simulations, validating
the method’s accuracy. Minor deviations in current waveforms are due to hardware non-idealities
not captured in the simulation.
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Future work may focus on extending this framework to support multilevel inverters,
incorporate advanced features such as overmodulation and fault handling, and explore real-time
tuning of SVPWM parameters. Additionally, integrating feedback mechanisms and developing
closed-loop control strategies using sensor data would further enhance the applicability of this
system in precision motor control applications.
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