ISSN: 1859-2171

NON COHEN-MACAULAY IN DIMENSION MORE THAN S LOCUS

Luu Phuong Thao*

College of Education, Thai Nguyen University

Abstract. Let (R, \mathfrak{m}) be a Noetherian local ring, M a finitely generated R-module. Let $s \geq -1$ be an integer. Following N. Zamani [14], M is a Cohen-Macaulay module in dimension more than s if every s.o.p. of M is an M-sequence in dimension more than s. In this paper, we introduce the notions of non Cohen-Macaulay in dimension more than s locus, $\operatorname{nCM}_{>s}(M)$ and i-th pseudo support in dimension more than s of M, $\operatorname{Psupp}_{>s}^i(M)$. It is clear that a Cohen-Macaulay module in dimension more than s for s=-1 is Cohen-Macaulay module. In this case, the non Cohen-Macaulay in dimension more than s locus and i-th pseudo support in dimension more than s are exactly the non Cohen-Macaulay and i-th pseudo support of M. Next, we give a description $\operatorname{nCM}_{>s}(M)$ via these i-th pseudo supports in dimension more than s of M.

Key words: Cohen-Macaulay modules in dimension more than s, non Cohen-Macaulay in dimension more than s locus, the i-th pseudo support, Noetherian dimension, quotient of a Cohen-Macaulay local ring.

1. Introduction

Throughout this paper, let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R-module with $\dim M = d$. It is well known that the Cohen-Macaulay modules play an important role in the theory of Noetherian rings and finitely generated modules. Recall that M is called Cohen-Macaulay if every system of parameters (s.o.p. for short) of M is an M-sequence. There are some extensions of the concepts of M-sequence and Cohen-Macaulay modules, among which are the notions of M-sequence in dimension more than s introduced by Brodmann-Nhan [1] and Cohen-Macaulay modules in dimension more than s defined by Zamani [14]. Let $s \geq -1$ be an integer. A sequence (x_1, \ldots, x_r) of elements in \mathfrak{m} is said to be an M-sequence in dimension more than s if $x_i \notin \mathfrak{p}$, for all $\mathfrak{p} \in \mathrm{Ass}_R(M/(x_1, \ldots, x_{i-1})M)$ satisfying $\dim(R/\mathfrak{p}) > s$, for all $i = 1, \ldots, r$. We say that M is a Cohen-Macaulay module in dimension more than s if every s.o.p. of M is an M-sequence in dimension more than s.

It is clear that M-sequences in dimension more than s for s=-1,0,1 are exactly M-sequences, f-sequences with respect to M in sense of Cuong-Schenzel-Trung [6], and generalized regular sequences with respect to M in sense of Nhan [10], respectively. Therefore, Cohen-Macaulay modules in dimension more than s for s=-1,0,1 respectively are Cohen-Macaulay modules, f-modules defined in [6] and generalized f-modules introduced in Nhan-Morales [11].

Non Cohen-Macaulay locus of M, denoted by nCM(M), is defined by

$$\operatorname{nCM}(M) = \{\mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \text{ is not Cohen-Macaulay } \}.$$

Let $i \geq 0$ be an integer. Following M. Brodmann and R. Y. Sharp [2], the *i*-th pseudo support of M, denoted by $\operatorname{Psupp}_{R}^{i}(M)$, is defined by

$$\operatorname{Psupp}_R^i(M) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid H^{i-\dim R/\mathfrak{p}}_{\mathfrak{p}\,R_\mathfrak{p}}(M_\mathfrak{p}) \neq 0 \}.$$

 $^{^*}Email: { thaoktsp@gmail.com}$

In 2010, N. T. Cuong, L. T. Nhan and N. T. K. Nga (see [5]) used pseudo support to describe the non-Cohen-Macaulay locus of M as follows

$$\operatorname{nCM}(M) = \bigcup_{0 \leqslant i < j \leqslant d} (\operatorname{Psupp}_R^i(M) \cap \operatorname{Psupp}_R^j(M)).$$

Similar to $\operatorname{nCM}(M)$ and pseudo support $\operatorname{Psupp}_R^i(M)$, we denote $\operatorname{nCM}_{>s}(M)$ and $\operatorname{Psupp}_{>s}^i(M)$ are non Cohen-Macaulay in dimension more than s locus and the i-th pseudo support in dimension more than s of M, respectively. The aim of this paper is to describe the non Cohen-Macaulay in dimension more than s locus via the i-th pseudo support in dimension more than s of M. Firstly, we give the following definition.

Definition 1.1. (a) Non Cohen-Macaulay in dimension more than s locus of M, denoted by $nCM_{>s}(M)$, is defined by

$$\operatorname{nCM}_{>s}(M) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid M_{\mathfrak{p}} \text{ is not Cohen-Macaulay in dimension more than s} \}.$$

(b) For an integer $i \geq 0$, the *i*-th pseudo support in dimension more than s of M, denoted by $\operatorname{Psupp}_{>s}^{i}(M)$, is defined by

$$\operatorname{Psupp}_{>s}^{i}(M) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{N-dim}_{R_{\mathfrak{p}}} \left(H_{\mathfrak{p} R_{\mathfrak{p}}}^{i - \dim R/\mathfrak{p}}(M_{\mathfrak{p}}) \right) > s \}.$$

Note that if s = -1, then non Cohen-Macaulay in dimension more than -1 locus is non Cohen-Macaulay locus and the *i*-th pseudo support in dimension more than -1 of M is *i*-th pseudo support of M. So, we have the description in the case s = -1. For $s \ge 0$ is an integer, we have the following theorem, which is the main result of this paper.

Theorem 1.2.

$$\operatorname{nCM}_{>s}(M) \subseteq \bigcup_{1 \leqslant i < j \leqslant d} (\operatorname{Psupp}_{>s}^i(M) \cap \operatorname{Psupp}_{>s}^j(M)).$$

The converse statement holds true when R is a quotient of a Cohen-Macaulay local ring. Furthermore, if M is equidimensional then

$$\operatorname{nCM}_{>s}(M) = \bigcup_{1 \leq i < d} \operatorname{Psupp}_{>s}^{i}(M).$$

2. Proof of Theorem 1.2

To prove this theorem, we need some following lemmas. Firstly, we recall the notion of N-dim by using the terminology of Kirby [9].

Definition 2.1. Noetherian dimension of an Artinian R-module A, denoted by N-dim $_R A$, is defined inductively as follows: when A = 0, put N-dim $_R A = -1$. Then by induction, for an integer $d \geq 0$, we put N-dim $_R A = d$ if N-dim $_R A < d$ is false and for every ascending sequence $A_0 \subseteq A_1 \subseteq ...$ of submodules of A, there exists n_0 such that N-dim $_R (A_{n+1}/A_n) < d$ for all $n > n_0$. Therefore N-dim $_R A = 0$ if and only if A is a non-zero Noetherian module. In this case, A has a finite length.

Remark 2.2. Suppose that (R, \mathfrak{m}) is local and $A \neq 0$.

(i) Kirby has shown that $\ell_R(0:_A\mathfrak{m}^n)$ is a polynomial with rational coefficients when $n\gg 0$. Roberts [13] has then proved that

N-dim_R
$$A = \deg \ell_R(0:_A \mathfrak{m}^n) = \inf\{t \ge 0: \exists x_1, ..., x_t \in \mathfrak{m}: \ell_R(0:_A (x_1, ..., x_t)R) < \infty\}.$$

(ii) Let \widehat{R} be the \mathfrak{m} -adic completion of R. Then A has a natural stucture as an \widehat{R} -module as follows: let $(x_n) \in \widehat{R}$, where $x_n \in R$, and let $u \in A$. Then we get $u.\mathfrak{m}^n = 0$ for $n \gg 0$. Therefore $x_n.u$ is constant for $n \gg 0$. So we defined $(x_n).u = x_n.u$ for $n \gg 0$. With this structure, a subset of A is an R-submodule if and only if it is an \widehat{R} -submodule. Therefore we have $\operatorname{N-dim}_{\widehat{R}} A = \operatorname{N-dim}_{\widehat{R}} A$.

Lemma 2.3. ([8, Theorem 3.7]) ([3, Lemma 3.1]). Let $0 \le s < d$. If $\operatorname{N-dim}_R(H^i_{\mathfrak{m}}(M)) \le s$ for all i < d then M is Cohen-Macaulay in dimension more than s. The converse is also true if R is a quotient of a Cohen-Macaulay local ring.

Lemma 2.4. ([4, Corollary 3.2, 3.6]) .

$$\operatorname{N-dim}_R(H^i_{\mathfrak{m}}(M)) \leq i$$
, for all i .

In particular, N-dim_R($H_{\mathfrak{m}}^d(M)$) = d.

Proof of Theorem 1.2. Let $\mathfrak{p} \in \mathrm{nCM}_{>s}(M)$. Then $M_{\mathfrak{p}}$ is not Cohen-Macaulay in dimension more than s. By Lemma 2.3, there exist $1 \leq t < \dim M_{\mathfrak{p}}$ such that $\operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H^t_{\mathfrak{p},R_{\mathfrak{p}}}(M_{\mathfrak{p}})\right)$ > s. Set $i = t + \dim(R/\mathfrak{p})$, we have

$$\operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H_{\mathfrak{p}R_{\mathfrak{p}}}^{i-\dim(R/\mathfrak{p})}(M_{\mathfrak{p}})\right) > s.$$

Hence $\mathfrak{p} \in \operatorname{Psupp}_{>s}^i(M)$. Set $k = \dim M_{\mathfrak{p}}$. Then t < k. Since $M_{\mathfrak{p}}$ is not Cohen-Macaulay in dimension more than s, we have k > s. Therefore, it follows by Lemma 2.4 that

$$\operatorname{N-dim}_{R_{\mathfrak{p}}}(H_{\mathfrak{p}R_{\mathfrak{p}}}^{k}(M_{\mathfrak{p}})) = k > s.$$

Set $j = k + \dim(R/\mathfrak{p})$. Then N- $\dim_{R_{\mathfrak{p}}} \left(H_{\mathfrak{p}R_{\mathfrak{p}}}^{j - \dim(R/\mathfrak{p})}(M_{\mathfrak{p}}) \right) > s$. This implies $\mathfrak{p} \in \operatorname{Psupp}_{>s}^{j}(M)$. So.

$$\mathfrak{p} \in \operatorname{Psupp}_{>s}^i(M) \cap \operatorname{Psupp}_{>s}^j(M).$$

Since $1 \le t < k = \dim M_{\mathfrak{p}}$, we have $1 \le i < j \le d$. Then

$$\operatorname{nCM}_{>s}(M) \subseteq \bigcup_{1 \leqslant i < j \leqslant d} (\operatorname{Psupp}_{>s}^{i}(M) \cap \operatorname{Psupp}_{>s}^{j}(M)).$$

Conversely, let $\mathfrak{p} \in \text{Psupp}_{>s}^i(M) \cap \text{Psupp}_{>s}^j(M), \ 1 \leq i < j \leq d.$ We have

$$\operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H^{j-\dim(R/\mathfrak{p})}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})\right) > s \text{ and } \operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H^{i-\dim(R/\mathfrak{p})}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})\right) > s.$$

It is clear that $j - \dim(R/\mathfrak{p}) \leq \dim M_{\mathfrak{p}}$. Then there exsist $t = j - \dim(R/\mathfrak{p}) < \dim M_{\mathfrak{p}}$ satisfy

$$\operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H_{\mathfrak{p}R_{\mathfrak{p}}}^{t}(M_{\mathfrak{p}})\right) > s.$$

Since R is a quotient of a Cohen-Macaulay local ring, it follows by Lemma 2.3 that $M_{\mathfrak{p}}$ is not Cohen-Macaulay in dimension more than s. Therefore, $\mathfrak{p} \in \mathrm{nCM}_{>s}(M)$. This proves

$$\bigcup_{1 \le i < j \le d} (\operatorname{Psupp}_{>s}^{i}(M) \cap \operatorname{Psupp}_{>s}^{j}(M)) \subseteq \operatorname{nCM}_{>s}(M).$$

Now assume that M is equidimensional then $\operatorname{Psupp}_{>s}^i(M) \subseteq \operatorname{Psupp}_{>s}^d(M)$, for all i < d. In fact, for any $\mathfrak{p} \in \operatorname{Psupp}_{>s}^i(M)$, we have $\operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H_{\mathfrak{p}R_{\mathfrak{p}}}^{i-\dim(R/\mathfrak{p})}(M_{\mathfrak{p}})\right) > s$. Since R is catenary and M is equidimensional then $\dim M_{\mathfrak{p}} = d - \dim R/\mathfrak{p}$. Therefore, we have by lemma 2.4 that

$$\begin{aligned} \operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H^{d-\dim(R/\mathfrak{p})}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})\right) &= d - \dim R/\mathfrak{p} \\ &\geq \operatorname{N-dim}_{R_{\mathfrak{p}}}\left(H^{i-\dim(R/\mathfrak{p})}_{\mathfrak{p}R_{\mathfrak{p}}}(M_{\mathfrak{p}})\right) > s. \end{aligned}$$

So, $\mathfrak{p} \in \text{Psupp}_{>s}^d(M)$. This implies

$$\operatorname{nCM}_{>s}(M) = \bigcup_{1 \le i < j \le d} (\operatorname{Psupp}_{>s}^{i}(M) \cap \operatorname{Psupp}_{>s}^{j}(M))$$
$$= \bigcup_{1 \le i < d} (\operatorname{Psupp}_{>s}^{i}(M).$$

Thus, the assertion is proved.

Note that when R is not a quotient of a Cohen-Macaulay local ring, the equality in Theorem 1.2 is not true. Here is an example.

Example 2.5. Let (R, \mathfrak{m}) be the Noetherian local domain of dimension 2 constructed by Ferrand and Raynaud in [7] such that the \mathfrak{m} -adic completion \widehat{R} of R has an associated prime \widehat{q} of dimension 1. Then R is not a quotient of a Cohen-Macaulay local ring. Consider the case s=0, we have R is Cohen-Macaulay in dimension more than 0. So, $\mathrm{nCM}_{>0}(R)=\emptyset$. Since $\mathrm{N\text{-}dim}_{R_{\mathfrak{p}}}\left(H^0_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}})\right)=0$, we have

$$\begin{aligned} \operatorname{Psupp}^{1}_{>0}(R) &= \{ \mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{N-dim}_{R_{\mathfrak{p}}} \left(H^{1-\dim R/\mathfrak{p}}_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}) \right) > 0 \} \\ &= \{ \mathfrak{p} \in \operatorname{Spec} R \mid \dim R/\mathfrak{p} = 0 \} = \{ \mathfrak{m} \}. \end{aligned}$$

On the other hand, for any $\mathfrak{p} \in \operatorname{Spec} R$, $\dim R/\mathfrak{p} = 1$ we have $\dim R_{\mathfrak{p}} = \dim R - \dim R/\mathfrak{p} = 1$. Hence N- $\dim_{R_{\mathfrak{p}}} \left(H^1_{\mathfrak{p}R_{\mathfrak{p}}}(R_{\mathfrak{p}}) \right) = 1$. Then

$$\operatorname{Psupp}_{>0}^{2}(R) = \{ \mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{N-dim}_{R_{\mathfrak{p}}} \left(H_{\mathfrak{p}R_{\mathfrak{p}}}^{2-\dim R/\mathfrak{p}}(R_{\mathfrak{p}}) \right) > 0 \}$$
$$= \{ \mathfrak{m} \} \cup \{ \mathfrak{p} \in \operatorname{Spec} R \mid \dim R/\mathfrak{p} = 1 \}.$$

Therefore $nCM_{>0}(R) \subseteq (Psupp_{>0}^1(R) \cap Psupp_{>0}^2(R)).$

References

- M. Brodmann and L. T. Nhan, (2008), "A finiteness result for associated primes of certain Extmodules", Comm. Algebra, 36, 1527-1536.
- [2] M. Brodmann and R. Y. Sharp, (2002), "On the dimension and multiplicity of local cohomology modules", Nagoya Math. J., 167, 217-233.
- [3] N. T. Cuong, M. Morales and L. T. Nhan, (2003), "On the length of generalized fractions", J. Algebra, (1)265, 100-113.
- [4] N. T. Cuong and L. T. Nhan, (2002), "On the Noetherian dimension of Artinian modules", Vietnam J. Math. (2)30, 121-130.
- [5] N. T. Cuong, L. T. Nhan, N. T. K. Nga, (2010), "On pseudo supports and non-Cohen-Macaulay locus of finitely generated modules", J. Algebra, 323, 3029-3038.
- [6] N. T. Cuong, P. Schenzel and N. V. Trung, (1978), "Verallgemeinerte Cohen-Macaulay moduln", Math. Nachr, 85, 55-73.
- [7] D. Ferrand and Raynaud, (1970), "Fibres formelles d'un anneau local Noetherian", Ann. Sci. Escole Norm. Sup., 3, 295-311.
- [8] S. Goto and L. T. Nhan, (2018), "On the sequentially polynomial type of modules", J. Math. Soc. Japan, 70, 365-385.
- [9] D. Kirby, (1990), "Dimension and length of Artinian modules", Quart. J. Math. Oxford, 41, 419-429.
- [10] L. T. Nhan, (2005), "On generalized regular sequences and the finiteness for associated primes of local cohomology modules", Comm. Algebra, 33, 793-806.
- [11] L. T. Nhan and M. Morales, (2006), "Generalized f-modules and the associated prime of local cohomology modules", Comm. Algebra, 34, 863-878.
- [12] L. T. Nhan, N. T. K. Nga and P. H. Khanh, (2014), "Non Cohen-Macaulay locus and non-generalized Cohen-Macaulay locus", Comm. Algebra, 42, 4414-4425.
- [13] R. N. Roberts, (1975), "Krull dimension for Artinian modules over quasi-local commutative rings", Quart. J. Math. Oxford, 26, 269-273.
- [14] N. Zamani, (2009), "Cohen-Macaulay Modules in Dimension > s and Results on Local Cohomology", Comm. Algebra, 37, 1297-1307.

TÓM TẮT

QUỸ TÍCH KHÔNG COHEN-MACAULAY CHIỀU LỚN HƠN ${\cal S}$

Lưu Phương Thảo*

Trường Đại học Sư phạm, Đại học Thái Nguyên

Cho (R,\mathfrak{m}) là một vành địa phương Noether, M là một R-môđun hữu hạn sinh. Cho $s\geq -1$ là một số nguyên. Theo N. Zamani [14], M là môđun Cohen-Macaulay chiều lớn hơn s nếu mọi hệ tham số của M là M-dãy chính quy chiều lớn hơn s. Trong bài báo này, chúng tôi giới thiệu các khái niệm quỹ tích không Cohen-Macaulay chiều lớn hơn s, ký hiệu $\operatorname{nCM}_{>s}(M)$ và tập giả giá thứ i chiều lớn hơn s của M, ký hiệu $\operatorname{Psupp}_{>s}^i(M)$. Dễ thấy rằng môđun Cohen-Macaulay chiều lớn hơn s với s=-1 chính là môđun Cohen-Macaulay. Trong trường hợp này, quỹ tích không Cohen-Macaulay chiều lớn hơn s và tập giả giá thứ i chiều lớn hơn s chính là quỹ tích không Cohen-Macaulay và tập giả giá thứ i của M. Tiếp theo, chúng tôi đưa ra mô tả quỹ tích $\operatorname{nCM}_{>s}(M)$ qua các tập giả giá thứ i chiều lớn hơn s của M.

*Email: thaoktsp@gmail.com

Từ khóa: Môđun Cohen-Macaulay chiều lớn hơn s, quỹ tích không Cohen-Macaulay chiều lớn hơn s, giả giá thứ i, chiều Noether, thương của vành Cohen-Macaulay địa phương.