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Today, drones are widely used for different purposes since they are
not too expensive. Drones employed as explosive material, camera
and illegal thing carriers can cause security threats. Computer vision
can be applied to detect illegally acting drones effectively in a variety
of conditions. A computer-based system using modern cameras is
possible to discover small distant drones. The system can also become
aware of low-speed and non-ground controlled drones. Furthermore,
the system can display true drones. This makes the system friendly to
users. This paper proposes a hybrid approach combining two
emerging convolutional neural networks: Faster R-CNN and
YOLOV2 to detect drones in images. Experimental results show that
the approach can add up to almost 5% and more than 11% to
precision and recall for Faster R-CNN and add up to 3% and more
than 6% to these two metrics for YOLOv2. This better detection is
resulted from the combination of the two networks. If a network is
failed to detect drones in an image, the other network can help.
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TU KHOA

Hoc may

Thi gidc may tinh

Mang no-ron tich chap

Faster R-CNN va YOLO

Phét hién may bay khong nguoi lai

Ngay nay, may bay khong nguoi 1ai (drone) dugc st dung rong réi
cho cac muc dich khac nhau vi chiing khong qua dit. Céc drone duoc
su dung lam cac phuong tién mang vat liéu no, may anh va vat bt
hop phap co thé gay ra cac méi de doa an ninh. Thi giac may tinh co
thé duoc ap dung dé phét hién cac drone hoat dong bat hop phap mot
cach hiéu qua trong nhiéu diéu kién khac nhau. Mot hé théng dua
trén may tinh sir dung cac camera hién dai c6 thé phat hién ra céac
drone nho ¢ xa. Hé théng ciing ¢ thé nhan biét dugc cac drone téc
do thép va khong duoc diéu khién tir mat dat. Hon nita, hé thong co
thé hién thi cac drone thyc su. Bidu nay gitp hé thdng than thién vai
ngudi dung. Bai bao nay dé Xuat mot céch tiép can lai két hop hai
mang no-ron tich chap méi ndi: Faster R-CNN va YOLOv2 dé phét
hién cac drone trong anh. Két qua thir nghiém cho thay rang phwong
phép nay c6 thé thém tGi gan 5% va hon 11% cho d6 chinh xac va do
tai hién cho Faster R-CNN va thém téi 3% va hon 6% cho hai chi s6
nay cho YOLOV2. Viéc phat hién tét hon nay 1a két qua cua su két
hop cua hai mang. Néu mot mang khong thé phat hién cac drone
trong mot birc anh, mang khéc c6 thé trg gidp.
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1. Introduction

Today, drones are widely used for different purposes since they are not too expensive. Drones
employed as explosive material, camera and illegal thing carriers can cause security threats.
Discovering illegally acting drones can help to alert, prevent and track their operation.

Different types of sensors such as RADAR, LIDAR, acoustic and RF (Radio Frequency)
sensors can be used to detect drones as reviewed in [1], [2]. However, small and low-speed
drones challenge RADAR. LIDAR is problematic with large data output and cloud sensitivity. A
long operational range and noisy environment makes an acoustic sensor less effective. An RF
sensor cannot work with non-ground controlled drones that are automatically navigated, based on
a predefined route.

Computer vision can be applied to detect illegally acting drones in a variety of conditions. A
computer based system using modern cameras is possible to discover small distant drones. The
system can also become aware of low-speed and non-ground controlled drones. Furthermore, the
system can display true drones. This makes the system friendly to users. For these advantages,
cameras are popularly integrated in modern drone detecting systems such as ND-BUO0O1 [3] and
DroneSentry [4].

Drone detection using computer vision is to determine the existence of a drone and its location
in an input image. A drone is located by its bounding box. The study in [2] provides a review of
methods to solve this problem. Some researches [5], [6] first represent a drone by feature vectors
that are extracted from a set of training images by feature descriptors such as SIFT (Scale
Invariant Feature Transform), SURF (Speeded-Up Robust Features), HOG (Histogram of
Oriented Gradients). A classifier (e.g. Support Vector Machine) trained on the extracted vectors
is applied to detect drones on sliding windows in an input image. This method requires skillful
extraction to acquire relevant information for detection. Furthermore, the sliding window
technique causes computationally costly exhaustive search. In [5], CBCs (Cascades of Boosted
Classifiers) are trained on Haar feature (feature achieved by Harr-like transformation), HOG
feature and LBP (Local Binary Pattern) feature for drone detection. In [6], SURF feature and
Neural Network are used for drone detection.

The study in [7] first preprocesses an image by morphological operations to highlight
potential drones. Then, hidden Markov models are employed to track and detect drones. The
detection decision is made after target information is collected and collated over a period of time.

The method in [8] partitions video into overlapping slices. Each slice contains N frames. The
accuracy of drone detection can be improved by increasing the number of overlapping frames.
Spatio-temporal cubes (st-cubes) with different scales for width, height and time duration are
created by sliding window technique. A motion compensation algorithm is used for st-cutes to
create st-cubes with a target object (drone) at center. Then, boosted trees or Convolutional Neural
Networks (CNN) are employed to categorize each st-cute as containing a drone or not. If more
than one drones are detected for the same spatial location at different scales, the most confident
one is reserved.

In [9], the Contiguous Outlier Representation via Online Low-rank Approximation
(COROLA) technique is first employed for detecting the appearance of a small moving object in
a frame and the CNN algorithm is applied for drone recognition.

Deep neural networks in some studies are used as begin-to-end drone detection models.
YOLOvV2 [10] and YOLOv3 [11] are used in [12], [13], [1] and Faster R-CNN [14] is used in [2]
for drone detection.

In this paper, we propose a method combining two emerging convolutional neural networks:
Faster R-CNN and YOLOV2 to detect drones in images. They both have lower layers that are
convolutional layers. These convolutional layers take an image as input and output feature maps.
The feature maps are then inputs for object localization and classification.
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Faster R-CNN (for more detailed see [14]) joins the region proposal network RPN and the
object detection network Fast R-CNN [15]. The two networks share convolutional layers. These
layers have input of an image and output of feature maps. RPN takes the input image and
produces region proposals and their objectness score. Region proposals are generated by sliding a
small network with fully connected convolutional layers over the feature map. A spatial window
of the feature map is taken as input for the small network. Each sliding window is mapped to a
lower-dimensional feature. This feature is then taken as input for two sibling fully connected
layers: a box-regression layer that outputs the encoded coordinates of k anchor boxes (also called
anchors), and a box-classification layer that outputs 2-k scores estimating probability of object or
not-object for each proposal. Fast R-CNN begins with convolutional and max pooling layers that
take the input image and generate feature maps. Then, a region of interest (Rol) pooling layer
uses max pooling to convert the features inside a region proposed by RPN into a small feature
map with a fixed spatial extent. Next, fully connected layers map the small feature map to a
feature vector. Finally, two fully connected sibling layers process the feature vector and outputs
N bounding boxes with respect to N object classes and N+1 probability estimates for N object
classes and background. A non-maximum suppression technique is independently used for each
class to remove low confidence bounding boxes.

YOLOV2 (for more detailed see [10]) also starts with convolutional and max pooling layers.
These lower layers are trained to extract high-level features. Then, the features from the layers at
the two highest levels are combined to get the final feature map of an input image. YOLOv2
views the input image as a grid of SxS cells. Each grid cell is in relation with a set of anchor
boxes. These anchor boxes’ centers are the same with the grid cell’s one. Their widths and
heights are predefined by k-mean based on the objects’ dimensions in the training data so that
these dimensions best present the objects’ dimensions. For each anchor box, YOLOV2 predicts a
bounding box, a confidence score that reflects how confident the bounding box containing an
object is, and conditional probabilities that the object belongs to classes. Then, low confidence
bounding boxes are also filtered out as in Faster R-CNN.

The difference between Faster R-CNN and YOLOV? is that Faster R-CNN proposes potential
regions (containing objects) for classification and continues refining these regions while
YOLOV2 preforms region detection and classification in just one time.

The following sections include: section 2 presents the proposed method, section 3 presents the
experiments and results of drone detection by Faster R-CNN, YOLOv2 and the proposed method,
and the last section is about conclusion.

2. Proposed method

The proposed method in this paper is rooted from our observation that some drones in images
are detected by YOLOv2 while they are not detected by Faster R-CNN and vice versa. The
method combines Faster R-CNN and YOLOV2 to detect drones so that when some drones are not
detected by one network, they are detected by the other.

shows the activity diagram of the proposed method. A rounded rectangle represents an
activity. A rectangle describes an activity’s input or output data. A black circle represents the
start node of the diagram. An encircled black circle denotes the end node of the diagram. A solid
arrow represents a transition from one activity to another. A condition for a transition is written
in square brackets. A dash arrow denotes a connection between an activity and its input or output
data. A synchronization bar (a filled rectangle) indicates start or end of parallel activities. At first,
Faster R-CNN and YOLOV?2 are trained separately for drone detection. The input of this step is
training images and the ground truth bounding boxes of drones in the training images. The output
of this step is Faster R-CNN and YOLOvV2 networks. Then, for each image taken from a set of
testing images, the two networks are used to detect drones in parallel. This step produces the
bounding boxes of detected drones and corresponding confidence scores. If Faster R-CNN’s
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minimum confidence score is greater than YOLOvV2’s one or YOLOV2’s minimum confidence
score is less than 0.5, then Faster’s R-CNN detection results are selected, otherwise YOLOV2’s

ones are selected.
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Figure 1. Proposed method
3. Experiments and results
In this section, dataset for training and testing Faster R-CNN and YOLOv2 networks for

drone detection is first described. Parameters for training Faster R-CNN and YOLOV2 are then

presented. The experimental results of testing Faster R-CNN, YOLOv2 and the hybrid approach
are presented at last.

3.1. Training and testing dataset

A dataset of 498 images of the quadcopter DJI Phantom 3 obtained from Google image search
tool, and screenshots from videos from YouTube [16] were used for training and testing Faster
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R-CNN and YOLOv2 network and testing the hybrid approach. Training data took 350 images
and testing data took 148 images.

The training data was augmented by randomly flipping original images and the bounding
boxes horizontally at each iteration of a training epoch. This helps diversify the training data
without having to increase the number of labeled training samples. The testing data was not
augmented for unbiased evaluation. Figure 2 presents an original image (the left image) and its
modified image (the right image) created by horizontal flip.

Figure 2. Data augmentation

3.2. Parameter settings

The values of training parameters for Faster R-CNN were set as the best ones that were
experimentally determined in [2]. These parameters include learning rate, momentum co-
efficient, maximum number of epochs, loU ranges for negative and positive anchor boxes at each
sliding window position, number of images to sample mini-batchs, number of anchor boxes at
each sliding window and pretrained network. loU is the ratio of intersection over union of a
ground truth bounding box and an anchor box. These training parameters were described detailed
in [2]. Their values are shown in Table 1. Table 2 presents those for YOLOv2. These values were
determined after several trials. YOLOV2 does not require loU ranges for positive and negative
anchor boxes as Faster R-CNN.

Table 1. Faster R-CNN training parameters

Parameter Value
Learning rate 0.001
Momentum co-efficient 0.09
Maximum number of epochs 30
loU range for negative anchors [00.3]
loU range for positive anchors [0.6 1]
#images to sample mini-batches 1
#anchor boxes 10
Pretrained network vggl9

Faster R-CNN and YOLOvV2 were respectively trained with parameter settings in Table 1 and
Table 2 by stochastic gradient descent. Then, Faster R-CNN and YOLOv2 networks were
combined as described in section 2 to detect drones in testing images.

Table 2. YOLOV2 training parameters

Parameter Value
Learning rate 0.001
Momentum co-efficient 0.9
Maximum number of epochs 30
#images to sample mini-batches 5
#anchor boxes 7
Pretrained network resnet50
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3.3. Results

We used precision and recall metrics on the whole set of test images to evaluate the proposed
method, where the metrics were calculated as the following equations. TP, FP and FN are the
numbers of true positives, false positives, and false negatives of the prediction on the whole set of
testing images respectively. A positive detection is true if the ratio of intersection over union of
its predicted box and a ground truth box is greater than or equal to 0.5, otherwise it is false. The
number of false negatives is the number of drones that were not detected.

TP
pT'GSiOTl = TPTPW (1)
__ (2)
recall = TP L FN

Table 3 shows the precisions and recalls of Faster R-CNN, YOLOv2 and the hybrid approach.
We can see that the precision and recall of the hybrid approach are almost 5% and more than
11% higher than those of Faster R-CNN, and are 3% and more than 6% higher than those of
YOLOvV2. This shows that Faster R-CNN and YOLOv2 can work together to improve the
accuracy of drone detection.

Table 3. Precision and recall comparison between different methods

Method Precision Recall
Faster R-CNN 0.877 0.796
YOLOvV2 0.896 0.847
Proposed method 0.926 0.908

4. Conclusion

In this paper, a hybrid method combining two emerging deep neural networks Faster R-CNN
and YOLOv2 for drone detection was proposed. The two networks in the hybrid approach are
first trained independently. Then, they are both used to detect drones in parallel. If the drone
detection results of YOLOv2 are not confident, then those of Faster R-CNN are selected. The
experimental results show that the hybrid approach can increase precision by almost 5% and 3%,
and increase recall by more than 11% and 6% for Faster R-CNN and YOLOV2 respectively. This
shows that Faster R-CNN and YOLOV2 can work together to more precisely detect drones.
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