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METHOD OF INFINITE SYSTEM OF EQUATIONS
ON NON-UNIFORM GRIDS FOR SOLVING A BOUNDARY PROBLEM
FOR ELLIPTIC EQUATION IN A SEMISTRIP

ABSTRACT

Tran Dinh Hung”
University of Education - TNU

For solving boundary value problems in unbounded domains, one usually restricts them to
bounded domains and find ways to set appropriate conditions on artificial boundaries or use quasi-
uniform grid that maps unbounded domains to bounded ones. Differently from the above methods
we approach to problems in unbounded domains by infinite systems of equations. Some initial
results of this method are obtained for several 1D problems. Recently, we have developed the
method for an elliptic problem in a semistrip. Using the idea of Polozhii in the method of summary
representations we transform infinite system of three-point vector equations to infinite systems of
three-point scalar equations and show how to obtain an approximate solution with a given
accuracy. In this paper we continue to develop the method on non-uniform grids for solving a

boundary problem for elliptic equation in a semistrip.
Key word: unbounded domain; elliptic equation; infinite system; method of summary

representation; non-uniform grid

INTRODUCTION

A number of mechanical as well as physical
problems are posed in infinite (or unbounded)
domains. In order to solve these problems,
many authors often limit themselves to deal
with the problem in a finite domain and make
effort to use available efficient methods for
finding exact or approximate solution in the
restricted domain. But there are some
guestions which arise: how large size of
restricted domain is adequate and how to set
conditions on artificial boundary to achieve
approximate solution with good accuracy?
Mathematicans often try to define appropriate
conditions on the boundary. These boundary
conditions are called artificial or absorbing
boundary conditions (ABCs) ([1], [9]). It is
important notice that all the ABCs or TBCs
are often constructed for the problems, where
the right-hand side function and the initial
conditions are assumed to have compact
support in space.

Differently from the above method we
approach to problems in unbounded domains
by infinite system of equations [6]. Some
initial results of this method are obtained for a
stationary problem of air pollution [2], [3] and

“Tel: 0983 966789, Email: trandinhhungvn@gmail.com

several one-dimensional nonstationary
problems [4]. Very recently, in [5] we have
successfully developed the approach for an
elliptic problem in a semistrip. Using the idea
of Polozhii in the method of summary
representations we transform infinite system
of three-point vector equations to infinite
systems of three-point scalar equations and
show how to obtain an approximate solution
with a given accuracy. But in the mentioned
works due to the use of uniform grids (UGs)
on the whole unbounded domains the
efficiency of our method is limited. In the
Conclusion of [5] we highlighted the way to
overcome this shortcoming. It is the use of
non-uniform grids (NUGs) with
monotonically increasing grid sizes.

In this paper we continue to develop the
method on non-uniform grids for solving a
boundary problem for elliptic equation [10] in
a semistrip:
ou o ou

Lu=y—+7—+a(x)— —b(xX)u(x,

vl Ol OGN
=f(x,y), x>0,0<y<],
u(x,0) = ¢ (x), u(x,2) = ,(x), u(0,y)

=y (y),u(x,y) >0, X— 4w,
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under the usual assumptions that the functions
in (1) are continuous and

y>0, |a(x)|<r, b(x)=0,
f(X,y)—>0,@(x) >0, Xx—-+ox.
CONSTRUCTION OF  DIFFERENCE
SCHEME

In order to solve the problem (1) we introduce
on @={(xy),x>0,0<y<1} the non-
uniform grid (NUG) in x dimension

B, = {069, % =X +hy(0) ¥, = i, i=12., =01, M}
with x, =0. Denote the set of interior points

hl(l)+h1(l+1)

by w,, h, = , 1=0,1,...

In sequel we shall use the Samarski technique

and notations in [8] Set
2

Lu= yz - +a(x)——b(x)u(x y)

and consider the
operator

associated perturbed

B6- %Jra(x)——b(x)u(x V),

1 o_1hX).|a(x)]
1+R" 2 7 ’

h(x) =h (1) =X =X,

where 3z =

X =X
h(X)Zhi — i+1 |—1'
2
Xy + X
——1<x<
2 2
Now represent the function a(x) as a sum of
a nonnegative and a nonpositive terms

XX 190

a=a"+a, a*:%(a+|a|)20,

1
a =—(a—-]al)<0.
2( [al)

Denote by v; the approximation of the
values u(x;,y;) on the grid a,,
%=%w>w=wmxa=amx

=b(x), f = T(x.y;). (%, y;) €@,

Next, we approximate the operator e by
the difference
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operator L v = »yv, +a*v, +a v, —bv, where
w:wmmn=%ﬁiga
Vi
=Ve (X, Y;) = hl(l)lj’
Ve Vi Ve
R e v e e YO

and replace the differential problem (1) by the
difference scheme

LV =pvy, +Lv—fu, (x,y) em,, (2)

Vio =@ (%), Vim =0,(%), Vo,j :V/(y ), Vi j —0, i+
Follow [5] and [8] it is easy to see that the
difference scheme (2) converges with the
accuracy (O(h,(i))* +h2).

SOLUTION METHOD
We write the difference equations in (2) in
detailed form
Vi,j+1 _2Vi2,j +Vi,j—1 + ey 1 (V|+lj VI j _Vi,' Vi -1, j)
h, h (i +1) h, (i)
i+vi+1,j-_vi,j a Vi,j _\-/i—l,j _bivi o fi N
h(i +1) h, (i) R
i=12,.; j=12,.,.M-1

and transform them to the standard five-points
difference scheme

+

75 & 7 7% &
S B VR AT TR v -
G ) g ) G e
‘&( 1 L—a— éi +bi+212)vi,j:fi,j,
fiy h(i+1) hl h(i) h(i+l) h,
=12, =12, M -1
(3)
Puta = a
tA = hh(|) ()
B—— 2% ,_& .ganddenote
hh(i+1) h(@(+21)
v fm'h_}/zvi,o
w(y) ! :
i,2 i,2
T RV B - R A P
- Vi - fi
l f o —Ly
iM-1 hzz iM
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Then the equations (3) together with boundary
conditions can be written in the form of three-
point vector difference equations

AVt TV+B,V,+1 (A\+Bi+bi+2#)vi=ﬁi i=12,..
2
(4)
where V, is defined above, V., >0 as
i —+co and T is the matrix of order M —1
0 1 0 O 0 0 O
1 0 1 0 0 0 O
0 1 0 1 0 0 O
T=
0O 0 0 O 1 0 1
O 0o 0o 0 .. 010

Next, we shall use the idea of Polozhii in the
method of summary representations [7] to
transform the infinite system of three-point
vector equations (4) to infinite systems of
three-point scalar equations. For this purpose
let us introduce the notations

S=(s)1' s = /I\il smuﬁﬂ

i j=12,..,M -1,
P T |
2, =2cos|1v|—”, j=1,2,.,M -1,

We have ST =S,S2=E and T =S'AS .
Mutiplying both sides of (4) with the matrix
S and put Vv. = (Wi,j) = SViv Gi = (gi,j) = Slfi,

i=0,1,2,..., j=1,2,...,.M-1, we obtain

AW + 2AW +BW,

iVia

h 2
For every fixed index j we have the system

+B, +b+—smZJ W +Bw
A i-1j A h ZM)

i, j
2

)
M-1 .
Wy | = fly = Zs”vovl, W, ; —0,i —> oo
1=1

It is obvious that (5) has the form of
customary three-point difference equations

(A+B +b+2h)W =G, i=12..

=0 i=12..

Aw,_,;—-C,w;+Bw,,,=-F;, 1=12..
(6)
=y, W, ; >0, 1>,
F;=-9;and

, 7

+B, +Db, + sin® =2— > 0.
=A h2 2M

Therefore, the solution of the system (3) is

reduced to the solution of M —1 systems of

customary three-point difference equations (6).

Next, in order to treat the system (6) we shall
use the method of infinite system of equations
in [6], which was developed by ourselves for
solving some one-dimensional problems in
[4]. For this purpose we set

pO,j :qO,j :0, rO] :‘L[o, pi,j :Ci,
ij
7
8 - (7)
a; :C_’ri’j =—=,1=12,.

ij i
and rewrite the system (7) in the canonical
form of infinite system as follows

W= P Wy 0 Wiy +55,1=012,.
W, ; —0,i— .

(8)

It is easy to see that the conditions of
Theorem 2.3 in [4] are satisfied and the
solution of the infinite system (8) can be
found by the truncation method.

Following the progonka method (or Thomas
algorithm) which is a special form of the
Gauss elimination [8] for tridiagonal system
of equations we shall seek the solution of (8)
in the form

W _a|+1jvv|+1] +ﬂi+1yj-i 20,1,..., (9)
where coefficients are calculated by the formulas
i, ;
=0, B, = Ho) iy =1 0 J
5 e (10)
r.+p 53
By =2 Puilii -1,
1- Pi % j

From the Theorem 3.2 in [4], we can get the
following theorem
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Theorem 1. Given an accuracy &>0. If
starting from a natural number N, there

holds m <g VizN;+1 then for the
deviation of the solution of the truncated
system

Wi =P Wiy + 0 Wiy 5 i1=012,.., Nj’
W, ; =0,i> Nj +1

compared with the solution w; of the infinite
system (8) there holds the following estimate

SL‘Jp|Wiyj -W, <e.
1

Now denote
V, = (v )W =(w, )Y 1=0,42,... and
set V, = SW, .

Theorem 2. We have

sup|v, -V kM —1&.
3y

The prove of Theorem 2 is similar as the
Theorem 4 in [5].

NUMERICAL EXAMPLES
The experiments are performed on NUGs

the estimation:

with increased stepsizes
h(i)=11h(i-1),i=12,.., h, is the
stepsizes in y
dimension. N =max{N,,N,,...,N,, ,} is the

size of the system that is automatically
truncated with the given accuracy ¢, error =

max [u(x;,y;) =V, ;| is the error of the
L]

obtained approximate solution compared with
the exact solution.

Example 1. We take

1
y =1 a(x) =-1, b(x) =1+m1
U exp(—y/\/;)+exp((y_1)/\j}7)+X.

x? +1
The results of convergence are given in the
Table 1. Remark that in [10] the equation (1)
was considered in the whole strip
(o< x<+40,0<y<1). It was discretized
and the obtained three-point system of vector
equations was truncated. The numerical
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experiment for the above example gave the
error of the truncated system at large number
of equations in comparison with the infinite
system but there was no information of its
deviation from the exact solution.

Table 1. The convergence of the method in

Example 1
h;(0) h, € N error
1 0,1 0,1 15 0,0089
0,01 0,04 0,01 89 0,0067
0,01 6,1&.10

0,01 0,01 96

Example 2. In this example, we do not know
the exact solution of the problem. Now we take

y=0.1,a(x) = —ﬁ, b(x) =0, (X, y) =0,

—x/5 —x/10

a(X) =, g, (x) =& ,w(y):l+w.

We have the results of convergence given in
the Table 2.

Table 2. The convergence of the method in

Example 2
h,(0) h, € N
1 0,1 0,1 14
0,1 0,1 0,01 36
0,1 0,01 0,01 39
CONCLUSION

In this paper, we developed the numerical
method in [5] by using the non-uniform grids
with monotonically increasing grid sizes.
Some numerical examples are shown to
illustrate the effectiveness of the method.

The development of the method for solving
other two-dimensional and three-dimensional
problems is the direction of our research in
the future.
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PHUONG PHAP HE VO HAN TREN LUGI KHONG PEU GIAI MOT BAI TOAN
BIEN CHO PHUONG TRIiNH ELLIPTIC TRONG NUA DAI

Tran Pinh Hing”
Truong Pai hoc Su pham - PH Thai Nguyén

Dé giai s6 cac bai toan bién trong mién v han, ngudi ta thuong gici han bai toan trong mot mién
hitu han va tim céch thiét 1ap cac diéu kién bién x4p xi trén bién nhan tao hoic st dung luéi tinh
toan twa déu anh xa mién khong giéi noi vao mién gisi noi. Khac vai cac cach 1am trén, ching toi
tiép can toi bai toan trong mién khong gidi noi boi hé vo han cac phuong trinh dai s tuyén tinh.
Mot s6 két qua ban dau d6i véi cac bai toan mot chiéu da dugc cong bd. Gan day, ching toi da dé
XUit phuong phap giai mot bai toan elliptic trong ntra dai. Str dung y tuong cua Polozhii trong
phuong phép biéu dién téng, ching t6i di dwa dugc hé phuong trinh véc to ba diém vé cac hé
phuong trinh sai phan vé hudng ba diém va thu nhan dugc nghiém gan ding cua bai toan véi sai
s6 cho truéc. Trong bai bao nay ching toi tiép tuc phét trién phuong phap trén ludi khong déu giai
mot bai toan bién cho phuong trinh elliptic trong ntra dai.

Tir khéa: mién vé han, phirong trinh elliptic, hé vé han, phirong phdp biéu dién tong, ludi khong deu
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