CONSTRUCTING HARDWAVE TO COUNT NUMBER OF STEEL BAR IN THE STEEL BUNCHES BY IMAGE PROCESSING

Pham Duc Long*

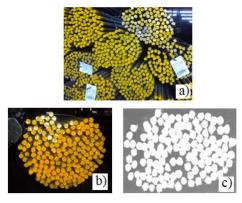
University of Information and Communication Technology - TNU

ABSTRACT

In this paper, we propose a new algorithm that is used to exactly count number of steel bars in the bundles via their image of each bunch. We also bring out an initial experiment perform on hardware to realized this algorithm for speed up processing. On that way the device can standalone without PC. Experiments are implemented on the kit Altera DE2. The results proved the correctness of algorithm and solution.

Keywords: count by image processing, count bar steel, image processing on the hardware

THE REQUIRES FROM PRACTICE


Counting the number of steel bar in a steel bundle

Currently, in Vietnam in the rough rolling mill for using in the construction haves usually two common products are rolled steel and steel bar. Steel bars from the factory are sold to major agents in units of weight (tons of cargo). But the small agents usually are selling with number of steel bar. In order to avoid being stolen during transportation and to close strengthen warehouse management, it is important to exactly count the number of steel bar per bunch corresponding to the weight of each bundle. Because the weight of each steel bar has toleran, therefore, it is impossible division the weight of the steel bundle by the weight of each steel bar to get the number of steel bar in the bundle.

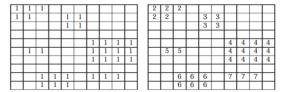
Counting by image processing program on the computer

Counting in the production process: It is counting each steel bar in the last stage of process (called the product recall stage). When number of steel bar is enough then line is stopped to packing the steel bundle. Counting by infrared sensors is inaccurate, because affect of noise in the factory is very large (the amplitude of the noise can reach more than 100V). Some factories in Vietnam often use mechanical counting systems. Due to reliability of the counter is not high, after a period of work system is not work anymore. Currently popular counting at the steel mill in the country is operated in hand - eye.

Counting affter steel bars are bouldled: The method counting the number of steel bars via image of head side of steel bundls has been studied by many many researchers around the world with many techniques such as Euclidean distance calculation, Hough transform, neural network, ...in [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. However according to the results announced, there is not any solution confirms the results counting 100% accurate.

Figure 1. The head side of steel bundle and their image This paper is arranged in three parts. In the first part we present the desired in pratice of

Counting in hand-eye are also used after steel bundling: the worker counters each steel bar and then paint to this bar to marking it is counted. The process is performed continuously until the last bar in the steel bundle. There was a proposal to count steel bar by image processing in the production process. This method performs counting the steel bars by image processing while they are moving on the chain conveyor as in [1].


^{*} Email: pdlong@ictu.edu.vn

reseach problem and overall results are received. In the second part of this paper the algorithm to counting objects perform by image processing on PC computer and results is described. In part 3, the experimental implementation of the algorithm on the kit FPGA was presented step-by-step, results of experiments and discussion. And in the finally is the conclusion of the paper.

ALGORITHM TO COUNT OBJECTS WHEN THEIR IMAGE ARE TOUCHING EACH OTHER

Classic counting algorithm by image processing

To count number of objects in an image one usually uses classical algorithm as: Start from any pixel in image and check the neighboring pixels of this pixel. If there are any pixels associated with it then performing addition that pixel to the group. Do continuous with other pixels that are not checked. The number of pixel groups is the number of objects in the image. In Figure 2b, the groups are labeled from 2 to n so that they are not confused with the black point value of 1. The number of groups in Figure 2b is n-1 = 7-1 = 6 means that there are 6 objects in this image.

Figure 2. Classic counting method a) Black pixels with a value of 1 b) Labeling the associated pixel groups

In practice because head side of steel bars often are not flat or due to the different loose or tight bundles, then their image may be touching one another like in Figure 1.a, b, c. With the objects whose images are separated from each another, the counting them are simple but when images of objects are overlapping or touching one another, one will need more processing and will not achieve 100% accuracy.

Algorithm counts objects with their images touching together (ACOTT)

In image processing, morphologies are widely used in both binary and grayscale images. The

two basic operators of morphology are dilation and erosion. From two these operators one can build opening and closing operator (not mentioned here).

The dilation of D (P, M) with the image P and mask M is shown in Figure 5a: the mask M is moved over the image P and at each test point if this bit is 1 then performing disjunction of bits of the mask with the bits of the image around the test pixel. The result is D (P, M).

The erosion of E (P, M) with the image P and mask M is shown in Figure 5b: the mask M is moved over the image P and at each test point if this bit is 1 then performing conjunction of bits of the mask with the bits of the image around the test pixel. The result is E (P, M).

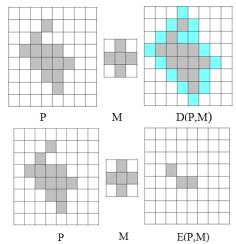


Figure 3. Operator dilation and operator erosion

To separate the overlap objects in an image one can use the morphology (with white images on the black background using the erosion also with the black image on the white background using dilation). However, it is not possible to abuse morphology with any number of times because after each iteration, the objects that do not overlap together will shrink their area gradually. So, when the touching (overlap another) objects separated, then alone (non-overlap) objects are deleted. We now propose an algorithm that can achieve 100% accuracy (with their diameter is great than 10 mm) when counting objects through their images. In Figure 1, we see that the images of the steel bundles can be separated or touching together. However, we note that because the steel bars in the bundle can not integrate together, their images can touching together but can not come too (for example, can not have image of two steel bar overlap together in image to their area become equal 1 or 1.5 times area of the alone steel bars). This is achieved when the light conditions are good and the optical axis of the camera lens coincides with the center axis of the steel bundle (this is a reasonable assumption because when capture image the camera is moved to the head side of the steel bundle and the lens is parallel to the axis of bundle). Therefore, the steel photographing the head side of steel bundle, the image of the touching together steel bars also only as in figure 1.c. This is an important analysis that leads to the following algorithm:

Algorithm to count the objects with their image is touching together:

- Load a binary image of a single steel bar I₁;
- Perform erosion image I₁;
- Calculate the area of single steel bar $I_1 = s_0$;
- Load image head side of steel bar I₂;
- Transform image I₂ to binary;
- Remove small objects in the I_2 if their area s are smaller $0.8s_0$;
- Erosion I_2 . After this step some touching together object are separated, but some of them are still touching, so the area of these objects is larger than the area of a single object s_0 ;
- Calculate the area of the objects in image I₂; Number1=0;

Repeat 1: With the objects in image I₂

- If (the area of s_i is approximately s_0 (with the times of erosion on I_1 and the times of erosion on I_2 is the same = θ , the image of a single steel bar is approximately s_0))

Then Number1 = Number1 + 1;

Delete the object s_i that is counted

{After this step, in the I_2 there are only the touching together objects}.

Repeat 2: With each of the touching together objects s_i that remain in the image I_2

- Number $2 = \text{round}(s_i/s_0)$

Number = Number1+Number2;

The value of θ were found experimentally and depending on the type of steel to be counted, Φ how many (Φ 10, Φ 12, ...) for normal steel bars or D how much (D10, D12, ...) with ribbed steel bar. In order to have a fully automated algorithm with different objects in future development stages, it is possible to construct an algorithm that automatically determines these thresholds of θ based on the actual characteristics about diameter of each type of steel bar in the image.

Illustrated by photos: In Figure 5b, there are nine objects in which three are separated objects and one group with two objects and another group with four objects touching together. If we use the classic counting algorithm we will only count 5 objects, and that is the wrong result. In Figure 5c, we see after some times of erosion morphologies, the groups of objects at 5a have been separated. However, the results are not always good, as shown in Fig. 5c, so the implementation Algorithm counts objects with their images touching together (ACOTT) is necessary.

We will implement ACOTT to count the number of objects in Figure 4d: First count objects that has area approximately the area of a single steel bar s0, and then delete these objects (in this count image Number 1 = 98). After deleting these objects the remaining groups as shown in Figure 4f. Number 2 = 22 and the number of steel bars is Number 2 = 98 + 22 = 120. The results of performing algorithm in Matlab is show on Figure 4.

EXPERIMENTS

Experiments on PC

We have implemented the ACOTT with images of head side of steel bundles from D10 to D14. 100 photos for each diameter are taken directly from the actual product in the factory. Some of them are shown in the Fig. 6. We use digital cameras normal with 3X lens, 10 Mega pixel of resolution.

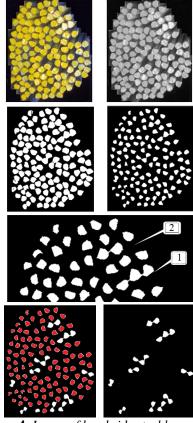


Figure 4. Image of head side steel boundle a) color image b) gray image c) binary image d) binary image affter erosion e) zoom in to image 4d shown found 2 groups 1 and 2 in that still there are touching together objects f, g) some group with touching together objects remain affter delete single objects

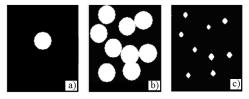
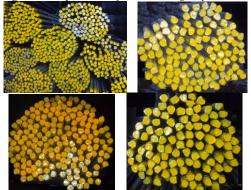



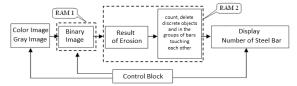
Figure 5. Separate objects in image by erosion

Figure 6. Some photos are used in the experiments

The results show that with the steel bar diameter D10 the results count have not reached the absolute accuracy. With the bundles of steel bars from D12 and bigger the results reach absolute accuracy. This result lead to implementation ACOTT on the electronical circuit to create a handle device independence with PC for count number of steel bar.

Table 1. Result of experiments on PC

Diameter of steel bars	D10	D12	D14
Accuracy of	97.2 %	100%	100%
counting results			


Performance on kit FPGA

Kit Altera DE2

Figure 7. Kit DE2 of Altera

Architecture of computational block: We experimented put ACOTT into circuits for realization on kit FPGA DE2 with computational blocks in Figure 8.

Figure 8. Architecture of computating and processing block on kit FPGA DE2 of Altera

The color or gray images obtained from the camera (or image file) are converted into binary images and are loaded into RAM1 memory area of the kit DE2. On the RAM2 area performs erosion, counting, deleting, counting, and summing the final result. Results are shown on the 7-segment LED HEX0 of the kit.

Create a data format:

In order to build the processing circuit on the DE2 kit, we need to create the appropriate data format according to this device. The

image data format used in the RAM1 of the FPGA kit is shown in Figure 9.

D C	ору	of H - N	lotepa	d
File	Edit	Format	View	Help
: 04 : 04 : 04 : 04 : 04 : 04 : 04 : 04	0000 0001 0002 0003 0004 0005 0006 0008 0008 0008	00411 00410 00410 00410 00410 00410 00410 00410 00410 00410 00410 00410 00410	00000 fd70a fae14 f5c28 f3332 f0a3c ee146 eb850 e8f5a e6664 e1478 deb82	ab :e8 :06 :24 :60 :7f :bb :d9 :f7 :15

Figure 9. The data structure in the RAM1 of the FPGA

In it - the first line example: ':' is required; the next two characters '04' index byte value data; the next four digits '0000' address the input data; The next two characters '00' are not used; '41100000' data; 'ab' test code.

Performing of experiment:

In the counting test on the hardware that is generated from the FPGA technology we have done on a simple binary image in Figure 5. This image is loaded from a file .BMP with size of 144x176. After arranging the image data in the format (Section 3.2.3) the image is put into RAM1. The morphology used in the experiment is erosion. This increases the number of black points in the image. The effect of erosion is to separate the white objects that are touching to each other, as shown in Figure 5c. The mask M is used as shown in Figure 3. The morphological and the mediate calculations of the object-counting algorithm and final result in processing are storaged in RAM2.

Result

Before load the VHDL code implementation to the kit, simulation and results of steps of the algorithm are given on the Figure 10 and Figure 11.

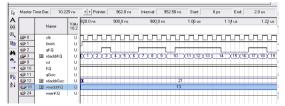
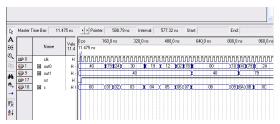



Figure 10. Simulation erosion befor load to kit

Figure 11. Calculate area of objects in the RAM 2

In the ACOTT algorithm for counting objects that are touching together, counting the area of objects is an important task. The area of an object is equal to the total number of pixels of that object. Figure 12 shows the results of calculating the area of an object in the RAM 2. Other steps of the algorithm are also performed on the same hardware. With the objects in Figure 5 the result count is as follows:

Figure 12. On the LED HEX0 of the kit DE2 shown number of objects in Figure 5 equal 9

Discuss

With programs that have performed well on PCs we can all put them into electronic circuits on FPGAs. This increases the processing speed because the processing speed is the speed of execution of the electronic circuit, regardless of the CPU speed of the PC. Stability is also higher and virus penetration is zero. However, the resources of the kit need to be sufficient for storage, computation and processing. According to the structure of the main resource system is still the data, the resources

used for the program when processing sequential type is usually not accounted for much; This is also an advantage for building the system.

CONCLUSION

Counting objects by image processing can receive highly accurate when using the ACOTT algorithm. With reasonable FPGA structures, we can harden any algorithm that has been implemented on a PC in general as well as with the proposed algorithm. This allows to creating the block devices that can operate independently of the computer and offer faster speeds and greater stability. Nowadays, it is a research trend very interested because that promises to give out many products with high practicality.

REFERENCES

- 1. Pham Duc Long, Automatical Count steel bars by image processing, *Thai Nguyen University Jurnal of Science and Technology, Volume 118, No 04, pg. 119-124*, 2014.
- 2. LUO Shan, HUANG Huan, LIU Jihong, A Counting Method of Steel Bars Bundle Based on Image Processing, Micro Computer Applications, Vol 129 No16, Jun1 2008, pg. 94-97.
 3. LUO San-ding, HUANG Jiang-feng, LI Yong, Method for Steel Bars Recognizing and Counting Based on Multi-camera Vision Fusion, Computer Engineering, 2008, Vol.34 No.3, pg. 231-233.
- 4. KE Long-zhang, YANG Yu-qing, A Real-time system designing for automatic steel counting based on DSP and its realization, Hun an Ag ricult ural Machinery, 2009, Vol 36. No 1, pg. 40-43.

SONG Qiang, XU Ke, XU Jinwu, SUN Hao, WANG Jinhua, WANG Chunmei, *Automatic Counting Technique for Steel Bars based on Image Proceessing*, Iron and Steel, Vol 39, No 5, 2004, pg. 34-38.

- 5. Xue Wei, Yuan Pei-xin, Han Qing-da, Chen Chang-hai, *Research on an Automatic Counting Method for Steel Bars Image*, Electrical and Control Engineering (ICECE), 2010 International Conference on, 2012, pg. 1644 1647.
- 6. Weiyan Hou, Zhengwei Duan, Xiaodan Liu, *A Template-Covering Based Algorithm to Count the Bundled Steel Bars*, 2011 4th International Congress on Image and Signal Processing. pg. 1813-1816, 2011.
- 7. Avadhoot R. Telepatil, Shrinivas A.Patil, *Parameter Estimation of metal blooms using image processing techniques*, International Journal of Innovative Research in Science, Engineering and Technology (ISO 3297: 2007 Certified Organization) Vol. 2, Issue 8, August 2013.
- 8. Vincent, Luc; Soille, Pierre. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (6): 583. doi:10.1109/34.87344, June 1991.
- 9. Beucher S. and Lantuejoul C., *Use of watershed in contour detection*, International Workshop on Image Processing RENNES, France, 17-21, 1979.
 10. Taira ONO, Osamu OOYAMA, *Advanced High Precision of Bar Inspection and Conditioning*, Nippon Steel Technical Report, No.
- 11. R. Hussin, M. Rizon Juhari, Ng Wei Kang, R.C.Ismail, A.Kamarudin, *Digital Image Processing Techniques for Object Detection From Complex Background Image*, Procedia Engineering 41 340 344, 2012.

TÓM TẮT XÂY DỰNG PHẦN CỨNG ĐẾM SỐ CÂY THÉP TRONG BÓ THÉP BẰNG XỬ LÝ ẢNH

Phạm Đức Long*

Trường Đại học Công nghệ thông tin & Truyền thông - ĐH Thái Nguyên

96 July 2007

Trong bài báo này chúng tôi đưa ra một thuật toán mới có khả năng xác định chính xác số cây thép trong bó thép bằng xử lý ảnh qua ảnh của đầu bó thép. Bài báo cũng đưa ra việc thử nghiệm ban đầu thực hiện thuật toán trên phần cứng với một ảnh có các nhóm đối tượng dính nhau để tăng tốc độ tính toán và tăng khả năng tích hợp tạo ra thiết bị hoạt động độc lập với máy tính PC. Việc cứng hóa đã được thử nghiệm thực hiện trên kit Altera DE2 cho kết quả hoạt động chính xác.

Từ khóa: đếm bằng xử lý ảnh, đếm số cây thép, xử lý ảnh trên phần cứng.

Ngày nhận bài: 08/3/2018; Ngày phản biện: 22/3/2018; Ngày duyệt đăng: 31/5/2018

_

^{*} Email: pdlong@ictu.edu.vn