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ADAPTIVE QUADRATURE METHOD TO APPROXIMATE DOUBLE
INTEGRALS OVER NON-RECTANGULAR REGIONS

ABSTRACT

Pham Thi Thu Hang, Dinh Van Tiep”
University of Technology - TNU

Recently, in an early publication [1], the author presented an algorithm to approximate double
integral over a rectangle basing on the adaptive quadrature method. This method has the upper
hand comparing with many other approaches due to its low cost and high efficiency. In that paper,
even the algorithm was constructed strictly for approximating double integrals over rectangles
only, it can be also extended to treat the case of non-rectangular regions. Nevertheless, for non-
rectangular regions, it is not somewhat practical to program such an algorithm because of the
consumption a large amount of RAM to store data of values for functions taking on the boundary
of the region. The storage is performed at many steps in each repeating loop. This shortcoming
often makes the program implement awkwardly. This paper aims to revise the aforementioned
algorithm to be more efficient.

Key words: numerical integration, approximate double integral, adaptive method, adaptive

quadrature, non-rectangle region.

INTRODUCTION"

Similar to an algorithm for the adaptive
guadrature of double integrals over a
rectangular region, presented in [1], one of
double integral over general regions, or more
exactly, over non-rectangular regions, could
be constructed. Here, we confine the
consideration to such regions bounded by
graphs of functions,
Q={(,V)|a<x<bclx)<y<dx)}
where c¢,d are functions defined on [a, b].
Without losing of generality, we can assume
that c(x) < d(x),Vx € [a,b], keeping in
mind that the algorithm we are going to
discuss here still works very well if the role of
x and y are switched. We are going to
approximate the double integral

1=£ff(x.y)dA

of a continuous function f defining on Q. To
apply the adaptive quadrature method which
had been well developed for one variable, we
rewrite the double integral in the form of an
iterated integral
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b rd(x)
I=f f f(x,y)dydx. @9)
a Je(x)

First, fixing x in [a, b], we use the method on
the interval [c(x),d(x)] of the vertical axis,
and then on the interval [a,b] of the
horizontal axis. For a given tolerance € > 0,
and a given level of subdivision N, after a
finite number of repetitions of this procedure,
we can decide whether the obtained
approximation meets the requirement or not.
(Failure to meet the requirement is signified
by exceeding the given level of the needed
level of subdivision.)

CONSTRUCTION OF THE METHOD

In this section, we are going to formulate the
theoretical basis for the algorithm. Firstly, set

a
,and functions k, q with

2

d(x) —c(x)
2q(x) = k(x) = —————
Apply Simpson’s and Composite Simpson’s
Rule with number of nodes n =4,
successively, we get

he |~ E
1=§Z"l ank(xj)f(x,-,y”) —h
1=0 j=0

=:Sl - Ell

Zp:h:

,Vx € [a, b].
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4 4
p —
=25 S a7
1=0 j=0

=: SZ - E; ’

whereny =n, = 1,n; =4, and mg = my =
1,m, = 2,m3 = my = 4. The error estimates
areE, =
b-a _ _ = _\O*f o _
o | pt k@ (3.8) + k5@ 5% (B vg) | and
= _ 1b- A0 f a2
B, = 1555 | W) 55 (3.6) +
k‘*(“)ﬂ(A A)] for some (7,¢) (" )

55 va)ls ns)\bVg)
and (#,9), (ﬁ, yﬁ) € Q. By assuming that
@D~ @D, (Br,) ~ (Ar,) we get
—_ 1 — ~ 1, ~ ~
E; = EEl' and S, —I| = E|52 = $4l.
Thus, S, estimates I about 15 times better
than it agrees with S;. So, if |S; — 5;| < 15¢,
then that |I-5,|= |fo f(x,y)dxdy —
§;| < & might be accepted confidently. We

can trust that S, is good enough to

approximate I within the given tolerance e.

Conversely, if [S; — S| = 15¢, we subdivide

Q into four smaller pieces by mesh points
a+b

<x2:b,

c(x)+d(x
() = yo(x) < () = S04
<y2(x) = d(x).

Now, on each piece, we required that the
difference between the corresponding S;, and
S, does not exceed a quarter of 15¢. If this
condition is fulfilled, we use this value of
S, as an approximation of the integral over
the considered piece. On the other hand, if
this condition fails to meet, we keep going on
subdividing the considered piece into four
smaller pieces and carry on performing the
above procedure until reaching the target. The
required tolerance is now reduced by a factor
of four from the previous level. For our
algorithm, we repeat the procedure a finite

a:x0<x1:
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number of times which guarantees that the
level of subdivision does not exceed N. If this
demand is undertaken and the procedure
completes, it is successful. By summing up
such approximations all over considered
pieces on which the procedure succeeds, we
obtain a significant approximation for I. In
the case where the level of subdivision
exceeds N, we conclude that the whole
procedure fails to meet the demand. To expect
the method can be reapplied successfully on
Q, we need to reduce the tolerance ¢ and/or
increase N.
ALGORITHM
The above algorithm could be expressed with
the use of a pseudo-code, as follows
INPUT region Q with a,b,c(x),d(x),
tolerance € > 0, limit N to number of levels.
OUTPUT approximation AP of I, or message
that N is exceeded (the procedure fails).
Step 1 (Initiate the procedure)
AP == 0;i:=0,L; == 1;¢; :== 15¢; (Here, I,
indicates the recent level of the subdivision.)
ng == 1;ny == 4;n, :=1; (The coefficients in
Simpson’s Rule.)
mo == 1;my == 4,m, = 2;mg = 4;,my ==
1. (The coefficients in Composite Simpson’s Rule.)
r; :=1;s; :== 2N 4+ 1; (The starting and ending
indices of mesh points traced on [a, b].)
R; = 0; (Initial region 0 is numbered by 0.)
Forj from 1 to 2V + 1 do
b—a
Xi=a+(G—-1 oN ;
F(D = c(X;); 6:() = d(X;);
(See the NOTE below for F;, G;.)
End do.
Step2 Whilei > 0 do Steps 3-5.
Step 3
h; = 0.5(X;, — Xy, )i t; = 0.5(s; — 1);
IF (L; = N) or (ht; is odd) THEN
OUTPUT (“LEVEL IS EXCEEDED.”);
STOP.
ELSE
Forj=1to3do
Xj = Xri + (] - 1)hij
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kij = 0.5[G;(r; + G — Dt) — Fi(nr;
+ (- Dtl;
Forl=1to3do
yij = F(ri+ G —Dt) + (- Dky;
End do;
End do; (Set up data of mesh points for Simpson’s
Rule.)
Forj=1to5do
Zj = Xri + 05(] - 1)hi;
pij = OZS[Gl(Tl + 05(] - 1)ti) - Fi(ri
+0.5(G — Dt
Forl=1to5do
qij = F;(r; + 0.5G — Dty) + (I — Dpyj;
End do;

End do; (Set up data of mesh points for
Composite Simpson’s Rule.)

S1=20;S,:=0; (Initiate the values for
Simpsons and Composite Simpson’s Rule,
respectively.)

Forl=1to3do

Forj=1to3do

hik::
S1=8+ %nlnjf(xlvﬁ)’lj);

End do; (Simpson’s Rule.)
End do;
Forl=1to5do

Forj=1to5do

hiD:
S, =5, + lli;mlmjf(zj,qu);

End do; (Composite Simpson’s Rule.)
End do;
Uy 3= T35 Up = S5 U S Uy = F
Us = Gj; Ug == €;; Uy == L;. (Save data.)
level; == u,; (The variable level stores the
sequence of operating levels in whole procedure.)
If size(level) > 1 then
count = 0;j = 1; (Initiate counting pieces of
the same level with the current level.)
while j < size(level) — 1 do
if level; = levelsizeever) then
count = count + 1;

endif,j=j+1;

end do; R; := 4 — mod(count, 4);
End if.

Step 4  i:=1i— 1. (Delete the level,)

AP = AP + §,; status; = "PASS".
(Variable status is used to store the sequence of
results revealed when performing the procedure
on each piece of the region.)

Else (4dd one level.) status; = "FAIL";
i '= i+ 1; (Data for region Ry, cf. Figure 1.)
Tp = Uq; S; = Uq + Uz Fy = Uy;

u
G; = 0.5(uy +us); € = f;Li =u; + 1.

i =1+ 1; (Data for region R,.)

T = UGS = Uy Uug; By = Giog Gy = us;
€ =¢€_1;L; = Li_y;

i =1+ 1; (Data for region R5.)

;= Uy + Ug; S; = Uy; Fj = uy;

G = 0.5(uy +us) € = €15 L; = Li_q;

i =1+ 1; (Data for region R,.)
7= Up +ug; S; = Uy Fy =
€ = €j—1;L; = L;_4.

Gi-1; Gi = Us;

End if.
END IF.

IE Figure 1
Step 6

OUTPUT AP, and R;, level;, status;.
STOP.

NOTE: F;,G; are used in place of the
functions c¢,d in order to reduce essentially
the memory for storing data of values for
functions at the corresponding step i because
the data of F;, G; are finite vectors instead of
continuum ones for continuous functions.
This technique improves dramatically the
efficiency of the method comparing to one
mentioned in [1].

EXAMPLES

Basing on the pseudo-code, one can easily
edit a code with a help of a plenty of powerful
software. The examples presented in this
paper are ones experimented with code
designed for implementing on Matlab R2017a
and Maple 2016.

Example 1 Approximate the double integral
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2x
= Ayt

Q={(x,y)|-1=<y=<3,1<x<3}
with the tolerance e = 0.0004, and the
number of limit level N = 5.
The procedure applied for this example in fact
is one presented in [1], where functions
c(x)=-1,d(x) =3 are constants. The
algorithm in this paper is more general than
one presented in [1]. The obtained
approximation is AP = 5.522168791. The
exact value of the integral is I = 131n13 —

18In3 —-5In5 = 5.52213.

The procedure is described by the sequences
R;, level; and status; released from the
algorithm. They are shown in Table 1.

Table 1.
level; | R; | status; level; | R; | status;
1 0 | FAIL 3 4 | FAIL
2 4 | PASS 3 3 | PASS
2 3 | PASS 3 2 | PASS
2 2 | PASS 3 1 | PASS
2 1 | FAIL

We are going to interpret data in Table 1.
Initiated with the level level; =1, and the
original region Q indicated by R; =0, the
procedure fails to meet the requirement. This
conclusion is identified by the value
status; = FAIL. Then, next step, Q is
partitioned into 4 smaller rectangles, this
implementation is indicated by the increased
value level; up to 2. The procedure is
reapplied on one of such rectangles, which is
numbered by R; =4, the results is
represented by the value status; = PASS.
Next, the procedure is reapplied again on
another subrectangle numbered by R; = 3 of
the same level level; = 2. This produces an
acceptable result indicated by the value
status; = PASS. And so on, the last
performance is undertaken at level; = 3, on
subrectangle numbered 1 of the subrectangle
1 obtained at level; = 2. The ending level; =
3 does not exceed the limit level N tells us
that the procedure completes successfully.
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The process and the graph of the function f
are illustrated in Figure 2.
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Example 2 Approximate the integral

I = ff (x? + 2xy)dA,
Q={(x,y)|x%<y<x,0sx<1}
withe = 1075,N = 5.
The obtained result AP = 0.1333283695 is
significant to estimate I to within 1075,

Indeed, it is very simple to see that I = 115 =

0.1(3). Other information about the
performance of the procedure applied on Q is
contained in sequences R; level;, and
status; which are released along with AP.
Table 2 tells us the complete process. The
graph of the function f is shown in Figure 3.

Table 2.

level; | R; | status; level; | R; | status;
1 0 FAIL 3 2 PASS
2 4 FAIL 3 1 FAIL
3 4 PASS 4 4 PASS
3 3 PASS 4 3 PASS
3 2 PASS 4 2 PASS
3 1 PASS 4 1 PASS
2 3 FAIL 2 2 FAIL
3 4 FAIL 3 4 PASS
4 4 PASS 3 3 PASS
4 3 PASS 3 2 PASS
4 2 PASS 3 1 PASS
4 1 PASS 2 1 FAIL
3 3 FAIL 3 4 PASS
4 4 PASS 3 3 PASS
4 3 PASS 3 2 PASS
4 2 PASS 3 1 PASS
4 1 PASS
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SUMMARY

Storing only data for a vector rather than data
of values for a function reduces dramatically
the memory of the computer in implementing
an algorithm. This technique is pretty much
suitable for the algorithm developed. A
further extension for this algorithm on higher
dimensions with the use of the technique is
hopefully expected to be a useful and efficient
algorithm in a future paper.

TOM TAT
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PHUONG PHAP CAU PHUONG THICH UNG XAP Xi TICH PHAN KEP

TREN MIEN HINH CHU' NHAT CONG

Pham Thi Thu Hing, Pinh Vin Tiép~

Truong Pai hoc Ky thugt Cong nghiép — PH Thai Nguyén

Méi day, trong bai bao [1], tac gia da gii thiéu mot thuat toan xap xi tich phan kép trén mién hinh
chir nhat dua trén phwong phéap cau phuong thich tng. Phuong phép nay to ra vuot troi hon cac
phuong phép ciu phuong khac béi chi phi thap song hiéu qua cao. Trong bai bao [1], mac du thuat
toan chi dugc xay dung cu thé va chat ché cho tich phan kép trén mién hinh chit nhat, nhung né ¢
thé duoc mo rong sang trudng hop cia mién hinh chir nhat cong. Tuy nhién, véi mién hinh chir
nhat cong, mot chuong trinh dugc 1ap trinh dya trén thuat toan dé sé kha ruom ra bai viéc s dung
mot dung lugng 16n RAM may tinh dé Iuu trit dir liéu vé gia tri ham sb trén bién cua mién. Viéc
lwu trir nay duoc thuc hién trong nhiéu budc tai mdi vong lap. Biéu nay khién chuong trinh thuc
thi cham chap, d6 chinh xac thap. Bai bao nay s& dua ra giai phap khac phuc mét cach hiéu qua

nhuogc diém nay.

Tir khoa: tich phan s, xap xi tich phdn kép, phwong phdp thich ing, cau phicong thich ing, mién

hinh ché nhdt cong.

Ngay nhdn bai: 27/4/2018; Ngay phdan bign: 23/5/2018; Ngay duyét ding: 31/5/2018
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