TREATMENT OF MALACHITE GREEN IN AQUEOUS SOLUTION USING CHITOSAN/PECTIN/SiO₂ COMPOSITE

Tran Nguyen Phuong Lan^{1*}, Nguyen Le Hue Tran¹, Ly Kim Phung¹, Le Duc Duy¹, Nguyen Hong Nam², Tran Thi Minh Thu³, Nguyen Trong Hong Phuc¹, Nguyen Minh Nhut¹

¹Can Tho University, ²University of Science and Technology of Ha Noi – VAST, ³Can Tho University of Technology

ARTICLE INFO		ABSTRACT
Received:	28/3/2024	The synthesis process of chitosan/pectin/SiO ₂ composite (CPS) was performed under the following conditions: mass ratio of chitosan/pectin
Revised:	23/5/2024	(CP):SiO ₂ =1:1.5 (g/g), mixing time of 0.5 h at room temperature. In this
Published:	24/5/2024	work, pectin was extracted from pomelo peel while rice husk ash was used for silica recovery. The obtained CPS were characterized by X-ray diffraction
KEYWORDS		(XRD), Fourier transform infrared spectroscopy (FTIR), and Field emission scanning electron microscopy (FE-SEM). The typical functional groups of
Chitosan/pectin/SiO ₂		CP and SiO ₂ are fully appeared in CPS. Malachite green (MG) was used in
Rice husk ash		this work to evaluate the dye removal possibility of CPS at pH 7, a MG concentration of 60 mg/L, a MG dosage of 1 g/L, and an adsorption time of
Pomelo peel		30 min. The MG adsorption capacity and adsorption efficiency are 61.3 mg/g
Malachite green		and 75.93%, respectively. The MG adsorption process is consistent with the
Adsorption		Langmuir and Sips isotherm adsorption models, meaning the adsorption tak place homogeneously, monolayer, independently and is physical adsorption Besides, the kinetics of the MG adsorption process follows the pseudo 2 order kinetic model. As a result, the CPS is a potential composite for treating MG dye in an aqueous solution.

XỬ LÝ MALACHITE GREEN TRONG NƯỚC BẰNG VẬT LIỆU COMPOSITE CHITOSAN/PECTIN/SiO $_2$

Trần Nguyễn Phương Lan¹*, Nguyễn Lê Huế Trân¹, Lý Kim Phụng¹, Lê Đức Duy¹, Nguyễn Hồng Nam², Trần Thị Minh Thư³, Nguyễn Trọng Hồng Phúc¹, Nguyễn Minh Nhựt¹

¹Trường Đại học Cần Thơ; ²Trường Đại học Khoa học và Công nghệ Hà Nội - Viện Hàn Lâm Khoa học và Công nghệ Việt Nam, ³Trường Đại học Kỹ thuật Công nghệ Cần Thơ

THÔNG TIN BÀ	I BÁO	TÓM TẮT
Ngày nhận bài:	28/3/2024	Nghiên cứu này trình bày quy trình tổng hợp composite chitosan/pectin/SiO ₂
	22/5/2024	(CPS) ở nhiệt độ phòng, với tỷ lệ khối lượng chitosan/pectin (CP):SiO ₂ =
Ngày hoàn thiện:	23/3/2024	1:1.5 (g/g), thời gian khuấy trộn 0,5 giờ. Trong nghiên cứu này, pectin được
Ngày đăng:	24/5/2024	trích ly từ vỏ bưởi và tro trấu được sử dụng để thu hồi SiO2. Các CPS được
		đánh giá đặc trưng bằng phương pháp nhiễu xạ tia X (XRD), phổ biến đổi
TỪ KHÓA		hồng ngoại Fourier (FTIR), và kính hiển vi quét điện tử (SEM). Các nhóm
		chức đặc trưng của pectin, chitosan và SiO ₂ đều xuất hiện đầy đủ trong thành
Chitosan/pectin/SiO ₂		phần của CPS. Thí nghiệm hấp phụ xử lý malachite green (MG) được thực
Tro trấu		hiện ở pH 7, nồng độ MG 60 mg/L, khối lượng CPS 1 g/L, thời gian hấp phụ
ro trau		30 phút. Dung lượng và hiệu suất hấp phụ MG lần lượt là 61,3 mg/g và
Vỏ bưởi		75,93%. Quá trình hấp phụ MG phù hợp với mô hình hấp phụ đẳng nhiệt
Malachite green		Langmuir và Sips, sự hấp phụ diễn ra đồng nhất, đơn lớp, độc lập và là hấp
		phụ vật lý. Ngoài ra, động học của quá trình hấp phụ tuân theo mô hình động
Hấp phụ		học giả kiến bậc hai. Vì vậy, CPS là vật liệu composite tiềm năng được ứng
		dụng để xử lý thuốc nhuộm MG trong môi trường nước.

DOI: https://doi.org/10.34238/tnu-jst.9979

229(06): 187 - 194

^{*} Corresponding author. Email: tnplan@ctu.edu.vn

1. Introduction

Various kinds of dye and pigment are extensively developed globally because of their wide applications. Typically, more than 0.7 million ton of synthesized dyes are produced annually, about 200,000 tons of dye are released to environment [1]. Malachite green (MG), a cation organic dye can cause several harmful diseases such as jaundice, blood clots and gastrointestinal irritation [2]. In Vietnam, rice husk, generated through rice producing, is mainly used as an energy source via burning. Its by-product is rice husk ash (RHA), which is a rich source of SiO₂ [3]. Chitosan, a product of chitin deacetylation, is found in the shells of shrimp, crap, and etc. and applied in many fields such as biotechnology, agriculture, cosmetic, food processing, and wastewater treatment [4]. Pectin, a group of polysaccharides in the plant cell wall, is composed of covalent bonding of D-galacturonic acid units. The mesocarp of pomelo peel is accounted for about 30 wt.% of fruit, which is used as the feedstock for pectin recovery. Chitosan/pectin (CP) composite with pectin originated from pomelo peel and application for methylene blue removal was investigated with the adsorption efficiency and capacity of 63.54% and 6.345 mg/g, respectively at a weight ratio of C and P of 1:9 [5]. Additionally, a composite of chitosan/SiO₂ was used for adsorbing heavy metals like Cu(II), Cr(VI) and Pb(II) [4]. Using nano chitosan/SiO₂ for the CO₂ adsorption reported a maximum adsorption capacity of 4.39 mmol/g [6]. The adsorption mechanism was demonstrated by using the experiment between carbon microparticles and turmeric solution [7]. The maximum adsorption efficiency of MG between 95.6% and 98.3% by using Sargassum crassifolium was performed at the optimal condition: pH 8.0, 25 °C, biomass dose of 2.0 g during 150 min [8]. This study aimed to synthesize a composite (CPS) including CP and SiO₂ and evaluate its adsorption capacity towards MG cation dye. To improve the efficiency of MG adsorption, the CPS synthesis parameters such as the weight ratio of CP and SiO₂, stirring temperature and time were investigated. The possible MG adsorption mechanism of CPS was predicted using the adsorption isotherm models (Langmuir, Freundlich and Sips) and pseudo first and second order adsorption kinetic models.

2. Materials and Methods

RHA used in this study was collected from Tra Noc Industrial Park, Can Tho city. Sodium hydroxide (96%), hydrochloric acid (36-38%), citric acid (99.5%), acetic acid (99.5%), ethanol (96%), potassium chloride (99%), and malachite green ($C_{23}H_{25}ClN_2$) were provided by from Xilong (China). Chitosan (medium molecular weight, with a degree of deacetylation of 87%). Pomelo peels were collected at a local market in Can Tho city.

2.1. Synthesis of CPS composite

The CP synthesis procedure was adopted from the previous study [5]. The pectin extraction was carried out with a pomelo peel:citric acid (0.14 M) amount of 1:20 g/mL at 95°C for 60 min. The extraction yield was 18%. Moreover, the CP composite was generated at a weight ratio of chitosan to pectin of 9:1 at room temperature (RT). Chitosan solution was prepared by dissolving 0.1 g of chitosan in 10 mL 5% acetic acid solution, while 0.9 g of pectin was put into 90 g deionized water to obtain the pectin solution [5]. SiO₂ was extracted using RHA and 5 M NaOH at a ratio of 1:10 g/mL for 3 h at 90°C [9]. The suspension was then filtrated to remove solid, the aqueous mainly contains sodium silicate. After that, 3 M HCl solution was added dropwise to previous solution at a ratio of 9:20 v/v at RT until white precipitate appeared. SiO₂ powder was obtained by filtration and washing of suspension to neutral pH and dried at 60°C. The CPS synthesis was processed as follows: Slowly added a certain weight of SiO₂ into the pectin solution at RT and stirred at 500 rpm for 1 h to obtain solution 1. Chitosan solution was added to the above solution. The obtained solution was then neutralized using 1 M NaOH, CPS was collected after filtration, washing and drying at 60°C. This work investigated synthesis

parameters including the weight ratio of $CP:SiO_2 = 1:0.5 - 1:3$ (g/g), stirring temperature from RT to 90° C, and time from 0.25 - 4 h.

2.2. Characterization of CPS composite

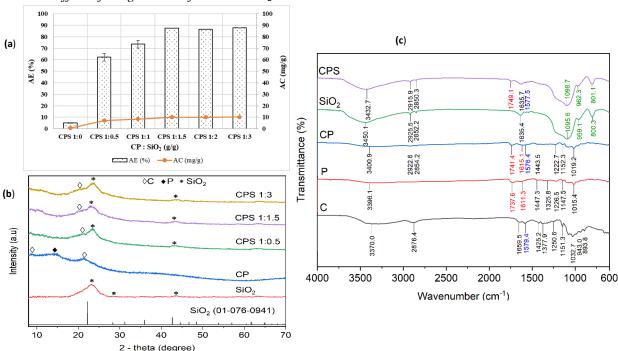
CPS were characterized using X-ray diffraction (XRD, Empyrean, PANalytical), Fourier transform infrared spectroscopy (FTIR, MIR/NIR Frontier, PerkinElmer), and Field emission scanning electron microscopy (FE-SEM, Hitachi S-4800).

2.3. Evaluation of MG removal using CPS composite

Point of zero charge of CPS (pH_{pzc}) was determined via the difference of pH values in which adsorption of H⁺ and OH⁻ ions on the CPS surface in 24 h. Briefly, 0.1 g of CPS and 25 mL of 0.1 M KCl were prepared. The pH value of each solution was adjusted from 3 to 12 using 0.1 M KOH or 0.1 M HCl. All experiments in this work were triplicated. The MG adsorption process was performed as follows: adsorbent dose (0.5 - 4.0 g/L), MG concentration (10 - 100 mg/L), and adsorption time (15-1440 min). The MG concentrations before and after adsorption were determined using an Evolution 60S UV-Visible Spectrophotometer (Thermo, USA) at λ_{max} = 617 nm [10]. The adsorption capacity (AC) and efficiency (AE) were calculated as follows:

$$AC = \frac{(C_0 - C_t) \times V}{m} \tag{1}$$

$$AC = \frac{(C_0 - C_t) \times V}{m}$$


$$AE = \frac{C_0 - C_t}{C_0} \times 100$$
(2)

whereas C_o (mg/L) and C_t (mg/L) are initial concentration and concentration at time t, respectively, V (L) and m (g) are solution volume and adsorbent weight, respectively.

3. Results and discussion

3.1. Synthesis of CPS composite

3.1.1. Effect of weight ratio of CP and SiO₂

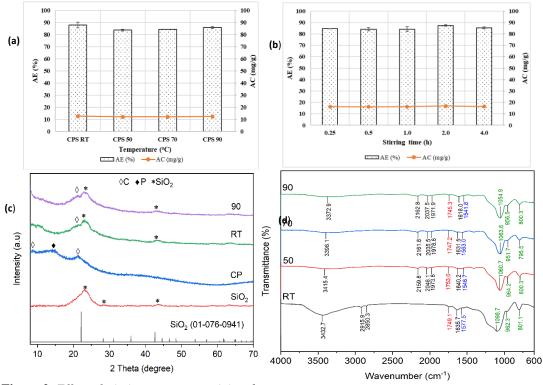


Figure 1. Effect of weight ratio of CP and SiO₂ to MG adsorption (a); XRD pattern of CPS at different weight ratios (b); FTIR of pectin (P), chitosan (C), CP, SiO_2 , CPS (c)

Figure 1a reveals the MG adsorption process of CPS at a CP: SiO_2 weight ratio =1:0 to 1:3 g/g. The AE increases about 82.65% with the presence of SiO_2 ; thus, MG⁺ cation could easily attach on the CPS surface via electrostatic interaction. The AE and AC remains unchanged at the weight ratio of 1:1.5 - 1:3.0 because the SiO_2 amount adhered on CPS is saturated. Thus, a suitable weight ratio of 1:1.5 g/g is selected for the next experiments.

The characteristic peak of SiO_2 found at $2\theta = 23.11^{\circ}$ and 43.6° (Figure 1b) proves that amorphous phase of SiO₂ is the major phase in CPS following the standard card 01-076-0941 [11]. Chitosan and pectin in CP has amorphous phase and are identified at $2\theta = 9^{\circ}$ and 21° (for chitosan) and 14° (for pectin), respectively [12]. CPS obtained at various weight ratio of CP: SiO₂ has all of characteristic peaks of chitosan and SiO₂; however, the peak intensity of SiO₂ decreases and characteristic peak of pectin at $2\theta = 14^{\circ}$ disappears due to the shield of chitosan and SiO₂ in CPS. The presence of pectin, chitosan and SiO₂ in CPS are determined using FTIR (Figure 1c). The vibration of O-H and N-H at 3450.1-3370.0 cm⁻¹ is overlapped, leading to difficult detection of N-H bonding. The bending vibration at 1579.4-1576.4 cm⁻¹ belonged to N-H bonding in chitosan [13]. The presence of adsorption peaks at 1749.1-1737.6 cm⁻¹ and 1615.1; 1611.3 cm⁻¹ in pectin, CP and CPS, respectively is determined as C=O (COOCH₃) and C-O (COOH) in ester groups of pectin. Besides, C-H, -CH₃, C-O groups of ether, belong to polysaccharide, are identified at 2925.5-2850.3 cm⁻¹; 1447.3-1425.2 cm⁻¹ and 1152.3-1147.5 cm⁻¹ [14]. For SiO₂ identification, some peaks at 1095.6 cm⁻¹ and 1098.7 cm⁻¹ are the asymmetrical stretching vibration of Si-O-Si. Moreover, wavenumber of 959.1 and 962.3cm⁻¹ are characteristics of stretching vibration of Si-OH while the symmetrical stretching vibration of Si-O is found at peaks of 800.3 and 801.1 cm⁻¹ [15]. These above vibrations prove that CPS composite has been successfully synthesized with the full presence of pectin, chitosan and SiO₂.

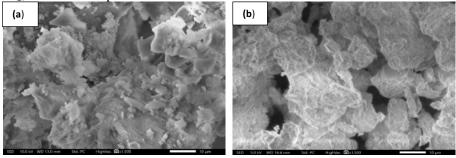

3.1.2. Effect of stirring condition

Figure 2. Effect of stirring temperature (a) and time (b) on MG adsorption; XRD pattern of CPS at 90°C and RT, CP and SiO₂ (c); FTIR results of CPS at RT to 90°C (d)

http://jst.tnu.edu.vn 190 Email: jst@tnu.edu.vn

A stirring temperature change from RT to 90°C (Figure 2a) does not help enhance the MG adsorption of CPS. This indicates that temperature has no effect on the CPS synthesis. The effect of stirring time for CPS synthesis (0.25 - 4 h) on the AE and AC is shown in Figure 2b. As can be seen, prolonging stirring time does not change the MG adsorption efficiency and the presence of SiO₂ in CP improves the MG removal. The XRD pattern of CPS at different synthesis conditions in Figure 2 reveals the full characteristic peaks of SiO_2 and chitosan at $2\theta = 23.11^{\circ}$ and 21° . However, the diffraction peak of pectin at $2\theta = 14^{\circ}$ disappears in the composite synthesized at 90 and that of RT due to the shield of chitosan and SiO₂ [12]. Hence, RT and 0.5 h are chosen in order to ensure the completion of CPS and save energy for the synthesis process. In addition, FTIR results (Figure 2d) at different stirring temperature exposes full characteristic groups of CPS. The appearance of 1753.0 – 1745.3 cm⁻¹ is C=O bonding of pectin while the bending vibration of N-H group of chitosan is found at 1577.5-1541.8 cm⁻¹. Asymmetrical stretching vibration of Si-O-Si is identified at peaks of 1095.6 cm⁻¹ and 1098.7 cm⁻¹. Stretching vibration of Si-OH and asymmetrical stretching vibration Si-O can be seen at 959.1-962.3cm⁻¹ and 800.3-801.1 cm⁻¹, respectively. There is a difference of SiO₂ and CPS in SEM images (Figure 3). Many different shapes of SiO₂ are formed like spherical, irregular rods and microscopic scales, proving the major amorphous phase which agrees with the XRD result [8]; meanwhile, the CPS surface has large rough scales which are irregularly agglomerated. Besides, its surface also has less holes and canals confirming that the SiO₂ is covered by CP composite [16]. Figure 4 proposes a mechanism of CPS synthesis via the formation of hydrogen bond and electrostatic attraction between SiO₂, chitosan and pectin.

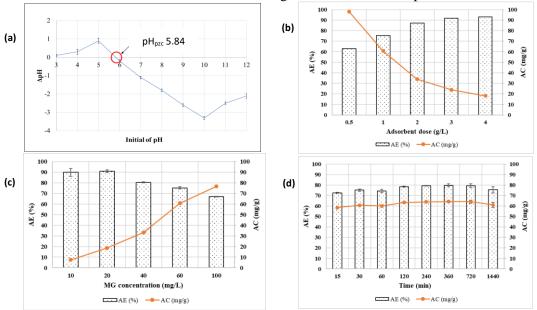


Figure 3. SEM images of SiO_2 (a) and CPS (b)

Figure 4. The proposed mechanism of CPS formation

3.2. Evaluation on MG adsorption capacity of CPS

The pH_{pzc} of CPS is 5.84 (Figure 5a). At pH>5.84, the CPS surface is negatively charged and versa; thus, MG adsorption favorably happens with pH>pH_{pzc}. The competition between H⁺ ion and MG⁺ cation occurs at acid environment, leading to an unfavorable adsorption process. For practical application, this work chooses adsorption condition at neutral pH because pH of dye effluent into the aquatic environment is mostly at 7-8. Firstly, the effect of adsorbent dose from 0.5 to 4.0 g/L (Figure 5b) on MG adsorption reports an increase of AE by 30.05% (62.84% - 92.89%) owing to more active sites of CPS at higher amount of adsorbent used. Particularly, at CPS dose from 0.5 to 3.0 g/L, the AE significantly increases between 62.84% and 91.82% and keeps unchanged at adsorbent loading of 3-4 g/L because the MG adsorption reaches equilibrium. In contrast, the AC decreases by 79.96 mg/g (98.09 – 18.13 mg/g) at adsorbent loading from 0.5 to 4 g/L. At low amount of adsorbent used, adsorption happens quickly, leading to easy diffusion of MG⁺ on the CPS surface and vice versa. The adsorbent dose of 1 g/L is used for other experiments.

Figure 5. Point of zero charge of CPS (a); effect of adsorbent dose (b), MG concentration (c) and time (d) on the removal of MG

Figure 5c indicates a drop of AE from 89.79 to 67.02%, a rising of AC is recorded between 7.75 and 76.56 mg/g at MG concentration of 10-100 mg/L. At low concentration, the amount of MG⁺ cation is relatively few in solution and the MG removal happens advantageously, bringing high AE and low AC. At higher concentration, the high AE and low AC are achieved. More MG⁺ cation in solution help adsorbing on the CPS surface easily and more active sites of CPS are occupied; thus, the AC increases [17]. The adsorption time on CPS was varied from 15 to 1440 min and reached equilibrium within short time (Figure 5d). At 120 min, the AE and AC are 78.52% and 63.4 mg/g, respectively which are not much different compared to that of 30 min. At the longer adsorption time more than 120 min, the AE and AC kept unchanged. Hence, 30 min is a suitable time for the MG removal in this work. Correlation coefficients of Langmuir and Freundlich models are 0.998 and 0.994, respectively. Langmuir empirical constant from 0.724 to 0.969 means that the adsorption is favorable in the MG concentration between 10 and 100 mg/L. The Freundlich adsorption intensity n = 1.2 proves that the MG adsorption follows the physical process [7]. Depending on the R² in Table 1, the adsorption follows the Langmuir and Sips models. The mechanism of MG adsorption on CPS is homogeneous, monolayer, independent adsorption, without mutual interaction, meaning the adsorption and desorption processes have

equal rates when reaching equilibrium [3]. The MG adsorption fits to pseudo 2nd order kinetic model. The equilibrium of 2^{nd} order kinetic model ($q_e = 64.2 \text{ mg/g}$) and experimental AC ($q_e = 64.2 \text{ mg/g}$) 60.71 mg/g) are nearly equal, proving that MG concentration strongly affects to the MG removal using CPS. The similar vibration ranges of CPS before and after adsorption indicate the presence of chitosan, pectin and SiO₂ (Figure 6). After adsorption, the intensification of vibrations in the lower range of 1010 cm⁻¹ describes the electrostatic attraction between MG⁺ and Si-OH group; the decrease of the vibration at 1700 cm⁻¹ reveals the interaction of carboxyl group and MG⁺ [18]. Broader vibrations in the range of 1400-1500 cm⁻¹ are ascribed to -C-N group of dye [19].

		•	
Models	Nonlinear equation	Value	Meaning
Langmuir	$q_e = \frac{q_{\text{max}} \times K_L \times C_e}{1 + K_L \times C_e} $ (3) $R_L = \frac{1}{1 + K_L \times C_e} $ (4)	$R^2 = 0.998$ $K_L = 0.0034 \text{ (L/mg)}$ $q_{max} = 276.48 \text{ (mg/g)}$ $0.724 \le R_L \le 0.969$	q_e and q_{max} (mg/g): equilibrium and maximum adsorption capacity; K_L (L/g): Langmuir empirical constant; R_L : Langmuir parameter
Freundlich	$q_e = K_F C_e^{\frac{1}{n}}(5)$	$R^2 = 0.994$; $n = 1.2$ $K_F = 1.58$ (L/g)	K_F (L/g): Freundlich constant; n: the adsorption intensity
Sips	$q_e = \frac{Q_s \times a_s \times C_e^n}{1 + a_s \times C_e^n} $ (6)	$R^2 = 0.997$ $Q_s = 270.9 \text{ (mg/g)}$ $a_s = 0.0035; n = 0.996$	Q _S (mg/g): maximum adsorption capacity of Sips model; a _S : Sips isotherm model constant; n: adsorption intensity
Pseudo fir order kinetic	$g_{c}^{st} q_{t} = q_{e} \times (1 - e^{(-k_{1} \times t)}) $ (7)	$R^2 = 0.910$ $k_1 = 1.01 (1/min)$ $q_e = 62.06 (mg/g)$	q_e and q_t (mg/g): equilibrium adsorption capacity and adsorption capacity at t time; k_1 (1/min): pseudo first order rate constant; t (min): adsorption time
Pseudo second orde	$q_t = \frac{q_e^2 \times k_2 \times t}{1 + q_e^2 \times k_2 \times t} $ (8)	$R^2 = 0.951$ $k_2 = 0.007 \text{ (g/mg.min)}$	k ₂ (g/mg.min): pseudo second order rate constant; t (min): adsorption time

Table 1. Adsorption isotherm and kinetic models

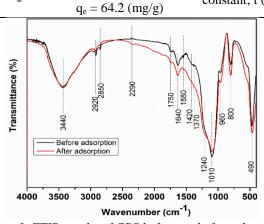


Figure 6. FTIR results of CPS before and after adsorption

4. Conclusion

kinetic

CPS composite was successfully prepared at RT at a CP:SiO₂ weight ratio of 1:1.5 (g/g) within 0.5 h. The characteristic diffraction and vibration peaks of CPS were determined by XRD and FTIR, indicating the presence of pectin, chitosan, and SiO₂ in CPS. The CPS surface has large rough scales which are irregularly agglomerated, less holes and canals. MG is adsorbed on the CPS surface due to the presence of SiO₂ via the electrostatic attraction, with AE and AC of 75.93% and 61.3 mg/g, respectively at pH 7, adsorption dose of 1 g/L, MG concentration of 60 mg/L during 30 min. The adsorption process is consistent to Langmuir and Sips isotherm models and pseudo second order kinetic model. The adsorption process is homogeneous, monolayer, independent, without mutual interaction.

REFERENCES

- [1] T. Robinson, G. McMullan, R. Marchant, *et al.*, "Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative," *Bioresource Technology*, vol. 77, no. 3, pp. 247-255, 2001.
- [2] D. Vu and H. Nguyen, "Direct synthesis of V₂O₅ from metals and study the adsorption properties with organic dyes," *Vietnam Journal of Catalysis and Adsorption*, vol. 12, no. 3, pp. 127-131, 2023.
- [3] N. P. L. Tran, K. P. Ly, T. T. Nguyen, *et al.*, "Synthesis of NaX/Fe₃O₄ composite and evaluation of its nitrate removal," *TNU Journal of Science and Technology*, vol. 228, no. 02, pp. 166-174, 2023.
- [4] A. Grace and G. Malar, "Synthesis, characterization of chitosan/nanosilica composite and their applications of heavy metal ions Cu (II), Cr (VI) and Pb (II) removal from aqueous solution," *Tierärztliche Praxis*, vol. 42, no. 3, pp. 95-107, 2022.
- [5] N. P. L. Tran, T. T. S. Mai, Q. K. Huynh, *et al.*, " Evaluation on the potential removal of cation and anion dyes using CTS/Pectin composite," *TNU Journal of Science and Technology*, vol. 228, no. 10, pp. 201-212, 2023.
- [6] S. M. Rafigh and A. Heydarinasab, "Mesoporous chitosan–SiO₂ nanoparticles: Synthesis, characterization, and CO₂ adsorption capacity," ACS Sustainable Chemistry & Engineering, vol. 5, no. 11, pp. 10379-10386, 2017.
- [7] R. Maryanti, A. Nandiyanto, T. Manullang, *et al.*, "Adsorption of dye on carbon microparticles: Physicochemical properties during adsorption, adsorption isotherm and education for students with special needs," Sains Malaysiana, vol. 49, pp. 2949-2960, 2020.
- [8] H. Omar, A. El-Gendy, and K. Al-Ahmary, "Bioremoval of toxic dye by using different marine macroalgae," *Turkish Journal of Botany*, vol. 42, pp. 15-27, 2018.
- [9] N. P. L. Tran K. P. Ly, H. V. T. Luong, *et al.*, "Facile synthesis of zeolite NaX using rice husk ash without pretreatment," *Journal of the Taiwan Institute of Chemical Engineers*, vol. 123, pp. 338-345, 2021.
- [10] S. Medidi, S. Markapurapu, M. R. Kotupalli, et al., "Visible light photocatalytic degradation of methylene blue and malachite green dyes with CuWO₄-GO nano composite," Modern Research in Catalysis, vol. 7, no. 2, p. 17-34, 2018.
- [11] I. Joni, L. Nulhakim, M. Vanitha, *et al.*, "Characteristics of crystalline silica (SiO₂) particles prepared by simple solution method using sodium silicate (Na₂SiO₃) precursor," *Journal of Physics: Conference Series*, vol. 1080, p. 012006, 2018.
- [12] M.S. Tamrin, J. Kaban, and Z. Alfian, "A novel composite membrane pectin from Cyclea Barbata Miers blend with chitosan for accelerated wound healing," *Polymer Testing*, vol. 99, p. 107207, 2021.
- [13] V. Mourya, N. Inamdara, and N. J. A. M. L. A. Tiwari, "Carboxymethyl chitosan and its applications," *Advanced Materials Letters*, vol. 1, no. 1, pp. 11-33, 2010.
- [14] S.Rashidova, R. Milusheva, L. Semenova, *et al.*, "Characteristics of interactions in the pectin–chitosan system," *Chromatographia*, vol. 59, pp. 779-782, 2004.
- [15] B. Shi, L. Xie, B. Ma, *et al.*, "Preparation and properties of highly transparent SiO₂ aerogels for thermal insulation," *Gels*, vol. 8, no. 774, pp. 1-13, 2022.
- [16] F. Riyanti, P. L. Hariani, Fatma, N. Yuliasari, et al., "Synthesis of chitosan-SiO₂ composite for adsorption methyl dyes from solution," *IOP Conference Series: Materials Science and Engineering*, vol. 857, no. 1, pp. 1-7, 2020.
- [17] M. Ahmed and R. Ram, "Removal of basic dye from waste-water using silica as adsorbent," *Environmental Pollution*, vol. 77, no. 1, pp. 79-86, 1992.
- [18] A. Soni, A. Tiwari, and A. K. Bajpai, "Removal of malachite green from aqueous solution using nanoiron oxide-loaded alginate microspheres: Batch and column studies," *Research on Chemical Intermediates*, vol. 40, pp. 913-930, 2014.
- [19] T.T.T. Nguyen, D.Q. Hoang, D.T.C Nguyen, *et al.*, "Adsorptive optimization of crystal violet dye using central composite rotatable design and response surface methodology: Statistical analysis, kinetic and isotherm studies," *Arabian Journal for Science and Engineering*, vol. 48, pp. 8835–8848, 2023.