PHÁT HIỆN VÙNG BẤT THƯỜNG TRÊN ẢNH MRI NÃO VỚI MÔ HÌNH SWIN-UNET
Thông tin bài báo
Ngày nhận bài: 07/04/24                Ngày hoàn thiện: 10/06/24                Ngày đăng: 10/06/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, W. Grimson, and A. Willsky, “A shape-based approach to the segmentation of medical imagery using level sets,” IEEE Transactions on Medical Imaging, vol. 22, no. 2, pp. 137–154, 2003.
[2] K. Held, E. Kops, B. Krause, W. Wells, R. Kikinis, and H.-W. Muller-Gartner, “Markov random field segmentation of brain mr images,” IEEE Transactions on Medical Imaging, vol. 16, no. 6, pp. 878–886, 1997.
[3] M. L. Le, N. M. T. Tran, T. N. Ho, and N. K. Pham, “Using U-Net model to detect abnormal areas on brain MRI images,” The National Conference on Fundamental and Applied IT Research (in Vietnamese) (FAIR), Nha Trang, 2020, pp. 656-662.
[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks forbiomedical image segmentation,” in Medical Image Computing and ComputerAssisted Intervention (MICCAI), ser. LNCS, vol. 9351, Springer, 2015, pp. 234– 241
[5] X. Xiao, S. Lian, Z. Luo, and S. Li, “Weighted res-unet for high-quality retina vesselsegmentation,” 2018 9th International Conference on Information Technology in Medicine and Education (ITME), 2018, pp. 327–331.
[6] Z. Zhou, M. R. Siddiquee, N. Tajbakhsh, and J. Liang, Unet++: A nestedu-net architecture for medical image segmentation. Springer Verlag, 2018, pp. 3–11.
[7] X. Li, H. Chen, X. Qi, Q. Dou, C.-W. Fu, and P.-A. Heng, “H-denseunet: Hybriddensely connected unet for liver and tumor segmentation from ct volumes,” IEEE Transactions on Medical Imaging, vol. 37, no. 12, pp. 2663–2674, 2018.
[8] O. C¸ic¸ek, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net:¨ Learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9901, Springer, Oct. 2016, pp. 424–432.
[9] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” CoRR, 2020, doi: 10.48550/arXiv.2005.12872.
[10] Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” in International Conference on Learning Representations, arXiv preprint arXiv:2010.11929, 2020.
[11] A. Hatamizadeh, V. Nath, Y. Tang, D. Yang, H. R. Roth, and D. Xu, “Swin UnetR: Swin Transformers for Segmantic Segmentation of Brain Tumors in MRI Images,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Springer International Publishing, 2022, pp.272-284.
[12] H. Cao, Y. Wang, J. Chen, D. S. Jiang, X. P. Zhang, Q. Tian, and M. Wang, “Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation,” in European conference on computer vision. Cham: Springer Nature Switzerland, 2022, pp. 205-218.
[13] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swintransformer: Hierarchical vision transformer using shifted windows,” in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 9992-10002.
[14] N. M. T. Tran, T. L. Bui, M. L. Le, T. N. Phu, and N. K. Pham, “Applying CGAN model for detecting abnormal areas on brain MRI images,” The National Conference on Fundamental and Applied IT Research (in Vietnamese) (FAIR), Ha Noi, 2022, pp. 462-469.
DOI: https://doi.org/10.34238/tnu-jst.10053
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





