TIẾP CẬN KINH TẾ SINH HỌC TUẦN HOÀN TRONG CÔNG NGHỆ XỬ LÝ ĐẤT Ô NHIỄM KIM LOẠI NẶNG BẰNG THỰC VẬT
Thông tin bài báo
Ngày nhận bài: 03/05/24                Ngày hoàn thiện: 17/06/24                Ngày đăng: 18/06/24Tóm tắt
Công nghệ xử lý ô nhiễm bằng thực vật (phytoremediation) nhằm giảm thiểu ô nhiễm kim loại nặng trong đất đang ngày càng được quan tâm bởi tính hiệu quả, tiết kiệm và thân thiện với môi trường. Tuy nhiên, việc thiếu các phương pháp quản lý và xử lý hiệu quả sinh khối thực vật chứa kim loại nặng đã hạn chế việc ứng dụng và phát triển công nghệ này. Bài viết đã tổng hợp, phân tích các dữ liệu về Công nghệ xử lý ô nhiễm bằng thực vật từ các ấn phẩm được công bố trong nhiều năm, sử dụng công cụ tìm kiếm với các từ khóa chuyên ngành trước khi lọc ra các thông tin không liên quan dựa trên tiêu đề, phần tóm tắt và từ khóa của mỗi bài viết. Trên cơ sở khái quát về Công nghệ xử lý ô nhiễm bằng thực vật, các phương pháp xử lý sinh khối sau thu hoạch như nhiệt phân, chiết xuất, tổng hợp vật liệu nano,... được đề xuất theo định hướng bền vững, tiếp cận nền kinh tế sinh học tuần hoàn nhằm tái sử dụng kim loại nặng. Đây là một chiến lược xanh đầy hứa hẹn góp phần giải quyết tình trạng khan hiếm nguồn nhiên liệu trong tương lai, do đó cần tiếp tục triển khai các mô hình nghiên cứu để mở rộng phạm vi ứng dụng ở quy mô công nghiệp.
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] ATSDR, CERCLA priority list of hazardous substances. Agency for Toxic Substances and Disease Registry, Division of Toxicology and Human Health Sciences, Atlanta, 2022. https://www.atsdr.cdc.gov/SPL/.
[2] D. C. Adriano, Lead. In D. C. Adriano (Ed.): Trace Elements in Terrestrial Environments 349–410, New York, NY: Springer, 2001.
[3] A. Kabata-Pendias, H. Pendias, Trace elements in soils and plants 37-92, CRC Press, London, 2001.
[4] K.T. Lim, M.Y. Shukor, and H. Wasoh, “Physical, chemical, and biological methods for the removal of arsenic compounds,” BioMed Research International, vol. 2014, pp. 1-9, 2014, doi: 10.1155/2014/503784.
[5] C. Garbisu and I. Alkorta, “Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment,” Bioresource Technology, vol. 77, pp. 229–236, 2001, doi: 10.1016/S0960-8524(00)00108-5.
[6] S. D. Cunningham, D. W. Ow, “Promises and prospects of phytoremediation,” Plant Physiol., vol. 110, no. 3, pp. 715–719, 1996.
[7] J. Iyyappan, G. Baskar, B. Deepanraj, A. V. Anand, R. Saravanan, and K. A. Mukesh, “Promising strategies of circular bioeconomy using heavy metal phytoremediated plants,” Chemosphere, vol. 313, pp. 1-12, 2023, doi: 10.1016/j.chemosphere.2022.137097.
[8] I. Raskin, B. D. Ensley, Phytoremediation of Toxic metal Using plants to Clean Up the Environment 53-70, John Wiley & Sons Inc, New York, 2000.
[9] I. A. Golubev, Handbook of Phytoremediation 186 - 189, Nova Science Publishers, Inc, New York, 2011.
[10] A. B. Shakeel et al., “Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach,” Chemosphere, vol. 303, pp. 1-10, 2022, doi: 10.1016/j.chemosphere.2022.134788.
[11] M. Kumar, A. Seth, A. K. Singh, M.S. Rajput, and M. Sikandar, “Remediation strategies for heavy metals contaminated ecosystem: a review,” Environmental and Sustainability Indicators, vol. 12, pp. 1-13, 2021, doi: 10.1016/j.indic.2021.100155.
[12] M. Mohanty, “Environmental & analytical toxicology post-harvest management of phytoremediation technology,” Environmental & Analytical Toxicology, vol. 6, pp. 1–8, 2019, doi: 10.4172/2161-0525.1000398.
[13] X. Shen, M. Dai, J. Yang, L. Sun, X. Tan, C. Peng, I. Ali, and I. Naz, “A critical review on the phytoremediation of heavy metals from environment: Performance and challenges,” Chemosphere, vol. 291, pp. 1-11, 2022, doi: 10.1016/j.chemosphere.2021.132979.
[14] H. W. Tan, Y. L. Pang, S. Lim, and W. C. Chong, “A state-of-art of phytoremediation approach for sustainable management of heavy metals recovery,” Environmental Technology & Innovation, vol. 30, pp. 1-24, 2023, doi: 10.1016/j.eti.2023.103043.
[15] M. Roy, S. Dutta, P. Mukherjee, and A. K. Giri, “Integrated phytobial remediation for sustainable management of arsenic in soil and water,” Environment International, vol. 75, pp. 180-198, 2015, doi: 10.1016/j.envint.2014.11.010.
[16] V. C. Pandey and O. Bajpai, “Phytoremediation: from theory toward practice,” Phytomanagement of Polluted Sites, vol. 2019, pp. 1–49, 2019, doi: 10.1016/B978-0-12-813912-7.00001-6.
[17] G. Florian, “The circular bioeconomy,” Scion, 2023. [Online]. Available: https://www.scionresearch.com/ about-us/the-forest-industry-and-bioeconomy/the-circular-bioeconomy. [Accessed April 16, 2024].
[18] R. Reeves and R. Brooks, “European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc,” Journal of Geochemical Exploration, vol. 18, no. 3, pp. 275–283, 1983, doi: 10.1016/0375-6742(83)90073-0.
[19] A. Bhargava, F. F. Carmona, M. Bhargava, and S. Srivastava, “Approaches for enhanced phytoextraction of heavy metals,” Journal of Environmental Management, vol. 105, pp. 103–120, 2012, doi: 10.1016/j.jenvman.2012.04.002.
[20] D, R. Roger, J. M. B. Alan, J. Tanguy, D. E. Peter, E. Guillaume, and E. Antony, “A global database for plants that hyperaccumulate metal and metalloid trace elements,” New Phytologist, vol. 218, pp. 397-400, 2017, doi: 10.1111/nph.14907.
[21] E. W. Goolsby and C. M. Mason, “Response: commentary: toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants,” Frontiers in Plant Science, vol. 6, pp. 1- 4, 2016, doi: 10.3389/fpls.2015.01252.
[22] A. R. Memon and P. Schroder, “Implications of metal accumulation mechanisms to phytoremediation,” Environmental Science and Pollution Research, vol.16, no. 2, pp. 162–175, 2009, doi: 10.1007/s11356-008-0079-z.
[23] A. R. Memon, “Metal hyperaccumulators: mechanisms of hyperaccumulation and metal tolerance,” in Phytoremediation. Springer, 2016, pp. 239–268.
[24] N. Rascio and F. Navari-Izzo, “Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?,” Plant Science, vol. 180, no. 2, pp. 169–181, 2011, doi: 10.1016/j.plantsci.2010.08.016.
[25] R. L. Chaney, A. J. Baker, and J. L. Morel, “The long road to developing agromining/phytomining,” in Agromining: farming for metals, Springer, 2018, pp. 1–17.
[26] M. Cheraghi, N. Khorasani, N. Yousefi, and M. Karami, “Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals,” Biological Trace Element Research, vol. 144, pp. 1133–1141, 2009, doi: 10.1007/s12011-009-8359-0.
[27] M. H. Wong and A. D. Bradshaw, The Restoration and Management of Derelict Land. Modern Approaches World Scientific Publishing, Singapore, Japan, 2003, pp. 143 – 146.
[28] L. Erdei, G. Mezôsi, I. Mécs, I. Vass, F. Fôglein, and L. Bulik, “Phytoremediation as a program for decontamination of heavy-metal polluted environment,” Acta Biologica Szegediensis, vol. 49, pp. 75–76, 2005.
[29] M. P. D. Souza, D. Chu, M. Zhao, A. M. Zayed, S. E. Ruzin, D. Schichnes, and N. Terry, “Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard,” Plant Physiology, vol. 119, no. 2, pp. 565–573, 1999, doi: 10.1104%2Fpp.119.2.565.
[30] D. Cargnelutti, L. A. Tabaldi, R. M. Spanevello, G. D. O. Jucoski, V. Battisti, et al., “Mercury toxicity induces oxidative stress in growing cucumber seedlings,” Chemosphere, vol. 65, pp. 999–1006, 2006, doi: 10.1016/j.chemosphere.2006.03.037.
[31] G. Florian, “The circular bioeconomy,” Scion, 2023. [Online]. Available: https://www.scionresearch.com/ about-us/the-forest-industry-and-bioeconomy/the-circular-bioeconomy. [Accessed April 16, 2024].
[32] G. Velvizhi, K. Balakumar, N. P. Shetti, E. Ahmad, K. K. Pant, and T. M. Aminabhavi, “Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy,” Bioresource Technology, vol. 343, pp. 1-11, 2022, doi: 10.1016/j.biortech.2021.126151.
[33] A. Mousavi, L. Pourakbar, S. S. Moghaddam, and J. Popović-Djordjević, “The effect of the exogenous application of EDTA and maleic acid on tolerance, phenolic compounds, and cadmium phytoremediation by okra (Abelmoschus esculentus L.) exposed to Cd stress,” Journal of Environmental Chemical Engineering, vol. 9, pp. 1-11, 2021, doi: 10.1016/J.JECE.2021.105456.
[34] X. Gong, D. Huang, Y. Liu, G. Zeng, R. Wang, J. Wei, C. Huang, P. Xu, J. Wan, and C. Zhang, “Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption,” Bioresource Technology, vol. 253, pp. 64-71, 2018, doi: 10.1016/j. biortech.2018.01.018.
[35] V. N. Edgar, F. L. Fabián, P. C. J. Mario, and V. R. Ileana, “Coupling plant biomass derived from phytoremediation of potential toxic-metal-polluted soils to bioenergy production and high-value by-products-a review,” Applied Science, vol. 11, no. 7, pp. 1-35, 2021, doi: 10.3390/app11072982.
[36] L. Xin, Z. Guo, X. Xiao, C. Peng, P. Zeng, W. Feng, and W. Xu, “Feasibility of anaerobic digestion on the release of biogas and heavy metals from rice straw pretreated with sodium hydroxide,” Environmental Science and Pollution Research, vol. 26, pp. 19434–19444, 2019, doi: 10.1007/s11356-019-05195-x.
[37] V. Ancona, A. B. Caracciolo, C. Campanale, B. De Caprariis, P. Grenni, V. F. Uricchio, and D. Borello, “Gasification treatment of poplar biomass produced in a contaminated area restored using plant assisted bioremediation,” Journal of Environmental Management, vol. 239, pp. 137–141, 2019, doi: 10.1016/j.jenvman.2019.03.038.
[38] V. Pidlisnyuk, J. Trogl, T. Stefanovska, P. Shapoval, and L. Erickson, “Preliminary Results on Growing Second Generation Biofuel Crop Miscanthus X Giganteus at the Polluted Military Site in Ukraine,” Nova Biotechnologica et Chimica, vol. 15, no. 1, pp. 77-84, 2016, doi: 10.1515/nbec-2016-0008.
[39] A. Doroshenko, V. Budarin, R. McElroy, A. J. Hunt, E. Rylott, C. Anderson, M. Waterland, and J. Clark, “Using in vivo nickel to direct the pyrolysis of hyperaccumulator plant biomass,” Green Chemistry, vol. 21, pp. 1236-1240, 2019, doi: 10.1039/C8GC03015D.
[40] G. Singh, P. Singh, A. Guldhe, T. A. Stenstrom, F. Bux, and S. Kumari, “Biotechnological intervention to enhance the potential ability of bioenergy plants for phytoremediation,” in Phytoremediation Potential of Bioenergy Plants, K. Bauddh, B. Singh, and J. Korstad, (Eds.), Springer, Singapore, 2017, pp. 387–408, doi: dx.doi.org/10.1007/978-981-10-3084-0_16.
[41] J. J. Purdy and L. B. Smart, “Hydroponic screening of shrub willow (Salix spp.) for arsenic tolerance and uptake,” International Journal of Phytoremediation, vol. 10, pp. 515–528, 2008, doi: 10.1080/15226510802115000.
[42] F. Qian, X. Zhu, Y. Liu, Q. Shi, L. Wu, S. Zhang, J. Chen, and Z. J. Ren, “Influences of temperature and metal on subcritical hydrothermal liquefaction of hyperaccumulator: implications for the recycling of hazardous hyperaccumulators,” Environmental Science & Technology, vol. 52, pp. 2225–2234, 2018, doi: 10.1021/acs.est.7b03756.
[43] V. Singhal and J. P. N. Rai, “Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents,” Bioresource Technology, vol. 86, pp. 221–225, 2003, doi: 10.1016/s0960-8524(02)00178-5.
[44] S. S. Dhiman, C. Selvaraj, J. Li, R. Singh, X. Zhao, D. Kim, J. Y. Kim, Y. C. Kang, and J. K. Lee, “Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production,” Fuel, vol. 183, pp. 107–114, 2016, doi: 10.1016/j.fuel.2016.06.025.
[45] Y. Xing, H. Y. Peng, M. X. Zhang, X. Li, W. W. Zeng, and X. E. Yang, “Caffeic acid product from the highly copper-tolerant plant Elsholtzia splendens postphytoremediation: its extraction, purification, and identification,” Journal of Zhejiang University Science B, vol. 13, pp. 487–493, 2012, doi: 10.1631%2Fjzus.B1100298.
[46] P. R. Waghmare, A. D. Watharkar, B. H. Jeon, and S. P. Govindwar, “Bio-ethanol production from waste biomass of phytoremediator: an eco-friendly strategy for renewable energy,” 3Biotech vol. 8, no. 158, pp. 1 – 10, 2018, doi: 10.1007/s13205-018-1188-0.
[47] M. Z. Xiao, R. Sun, Z. Y. Du, W. B. Yang, Z. Sun, and T. Q. Yuan, “A sustainable agricultural strategy integrating Cd-contaminated soils remediation and bioethanol production using sorghum cultivars,” Industrial Crops and Products, vol. 162, pp. 1-10, 2021, doi: 10.1016/j.indcrop.2021.113299.
[48] C. H. Ko et al., “Bioethanol production from recovered napier grass with heavy metals,” Journal of Environmental Management, vol. 203, pp. 1005–1010, 2017, doi: 10.1016/j.jenvman.2017.04.049.
[49] R. K. Boda, N. V. P. Majeti, and S. Suthari, “Ricinus communis L. (castor bean) as a potential candidate for revegetating industrial waste contaminated sites in periurban Greater Hyderabad: remarks on seed oil,” Environmental Science and Pollution Research, vol. 24, pp. 1-10, 2017, doi: 10.1007/s11356-017-9654-5.
[50] Y. Wu et al., “A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks,” Science of The Total Environment, vol. 708, pp. 1-10, 2020, doi: 10.1016/j.scitotenv.2019.135096.
[51] X. Cui, Y. Shen, Q. Yang, S. Kawi, Z. He, X. Yang, and C. H. Wang, “Simultaneous syngas and biochar production during heavy metal separation from Cd/Zn hyperaccumulator (Sedum alfredii) by gasification,” Chemical Engineering Journal, vol. 347, pp. 543–551, 2018, doi: 10.1016/j.cej.2018.04.133.
[52] M. N. Ruiz-Felix, W. J. Kelly, R. A. Balsamo, and J. A. Satrio, “Evaluation of sugars and bio-oil production using lead contaminated switchgrass feedstock,” Waste and Biomass Valorization, vol. 7, pp. 1091-1104, 2016, doi: 10.1007/s12649-016-9508-2.
[53] I. R. Beattie and R. G. Haverkamp, “Silver and gold nanoparticles in plants: sites for the reduction to metal,” Metallomics, vol. 3, pp. 628–632, 2011, doi: 10.1039/c1mt00044f.
[54] H. Huang, W. Yao, R. Li, A. Ali, J. Du, D. Guo, R. Xiao, Z. Guo, Z. Zhang, and M. K Awasthi, “Effect of pyrolysis temperature on chemical form, behavior and environmental risk of Zn, Pb and Cd in biochar produced from phytoremediation residue,” Bioresource Technology, vol. 249, pp. 487–493, 2018, doi: 10.1016/j.biortech.2017.10.020.
[55] S. Tayibi, F. Monlau, A. Bargaz, R. Jimenez, and A. Barakat, “Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: a critical review and future perspectives,” Renewable Sustainable Energy Reviews, vol. 152, pp. 111–130, 2021, doi: 10.1016/j.rser.2021.111603.
[56] W. Dastyar, A. Raheem, J. Hec, and M. Zhao, “Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from phytoextraction process,” Chemical Engineering Journal, vol. 358, pp. 759–785, 2019, doi: 10.1016/j.cej.2018.08.111.
[57] W. J. Liu, K. Tian, H. Jiang, X. S. Zhang, H. S. Ding, and H. Q. Yu, “Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example,” Environmental Science & Technology, vol. 46, no. 14, pp. 7849-7856, 2012, doi: 10.1021/es204681y.
[58] A. Mudhoo and S. Kumar, “Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass,” International Journal Environmental Science and Technology, vol. 10, pp. 1383–1398, 2013, doi: 10.1007/s13762-012-0167-y.
[59] J. Zhang, S. Wu, J. Xu, P. Liang, M. Wang, R. Naidu, Y. Liu, Y. B. Man, M. H. Wong, and S. Wu, “Comparison of ashing and pyrolysis treatment on cadmium/zinc hyperaccumulator plant: effects on bioavailability and metal speciation in solid residues and risk assessment,” Environmental Pollution, vol. 272, pp. 1-35, 2021, doi: 10.1016/j.envpol.2020.116039.
[60] A. U. Rajapaksha, S. S. Chen, D. C. W. Tsang, Z. Ming, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and S. O. Yong, “Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification,” Chemosphere, vol. 148, pp. 276–291, 2016, doi: 10.1016/j.chemosphere.2016.01.043.
[61] L. Zhou, X. Zhu, T. Chi, B. Liu, C. Du, G. Yu, H. Wu, and H. Chen, “Reutilization of manganese enriched biochar derived from Phytolacca acinosa Roxb. residue after phytoremediation for lead and tetracycline removal,” Bioresource Technology, vol. 345, pp. 1-11, 2022, doi: 10.1016/j.biortech.2021.126546.
[62] Z. Wang, Q. Tian, J. Guo, R. Wu, H. Zhu, and H. Zhang, “Co-pyrolysis of sewage sludge/cotton stalks with K2CO3 for biochar production: improved biochar porosity and reduced heavy metal leaching,” Waste Management, vol. 135, pp. 199–207, 2021, doi: 10.1016/j.wasman.2021.08.042.
[63] Z. Deng, J. Yang, J. Li, and X. Zhang, “Removal of heavy metals and upgrading crude bio-oil from Phytolacca americana L. harvest using hydrothermal upgrading process,” China Journal Environmental Engineering, vol. 8, pp. 3919–3926, 2018.
[64] Q. Song, Z. Sun, Y. Chang, W. Zhang, Y. Lv, J. Wang, F. Sun, Y. Ma, Y. Li, F. Wang, and X. Chen, “Efficient degradation of polyacrylate containing wastewater by combined anaerobic–aerobic fluidized bed bioreactors,” Bioresource Technology, vol. 332, pp. 125–138, 2021, doi: 10.1016/j.biortech.2021.125108.
[65] Z. Zhao, H. Chen, H. Zhang, L. Ma, and Z. Wang, “Polyacrylamide-phytic acid-polydopamine conducting porous hydrogel for rapid detection and removal of copper (II) ions,” Biosensors and Bioelectronics, vol. 91, pp. 306–312, 2017, doi: 10.1016/j.bios.2016.12.047.
[66] C. Li, M. Wang, X. Luo, L. Liang, X. Han, and X. Lin, “Accumulation and effects of uranium on aquatic macrophyte Nymphaea tetragona Georgi: potential application to phytoremediation and environmental monitoring,” Journal Environmental Radioactivity, vol. 198, pp. 43–49, 2019, doi: 10.1016/j.jenvrad. 2018.12.018.
[67] R. Molaey, H. Yesil, B. Calli, and A. E. Tugtas, “Enhanced heavy metal leaching from sewage sludge through anaerobic fermentation and air-assisted ultrasonication,” Chemosphere, vol. 279, pp. 1-11, 2021, doi: 10.1016/j.chemosphere.2021.130548.
[68] A. D. Delil, N. Köleli, H. Dağhan, and G. Bahçeci, “Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process,” Environmental Technology & Innovation, vol. 17, pp. 1-15, 2020, doi: 10.1016/j.eti.2019.100559.
[69] D. Wang, H. Liu, Y. Ma, J. Qu, J. Guan, N. Lu, Y. Lu, and X. Yuan, “Recycling of hyper-accumulator: synthesis of ZnO nanoparticles and photocatalytic degradation for dichlorophenol,” Journal of Alloys and Compounds, vol. 680, pp. 500 – 505, 2019, doi: 10.1016/j.jallcom.2016.04.100.
[70] P. K. Rai, S. S. Lee, M. Zhang, Y. F. Tsang, and K. H. Kim, “Heavy metals in food crops: health risks, fate, mechanisms, and management,” Environment International, vol. 125, pp. 365–385, 2019, doi: 10.1016/j.envint.2019.01.067.
[71] L. Marchiol, “Synthesis of metal nanoparticles in living plants,” Italian Journal of Agronomy, vol 7, no. 3. pp. 274-282, 2012, doi: 10.4081/ija.2012.e37.
[72] L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, and H. Xie, “Silver nanoparticles: Synthesis, medical applications and biosafety,” Theranostics, vol. 10, pp. 8996–9031, 2020, doi: 10.7150/thno.45413.
[73] A. Praveen and V. C. Pandey, “Miscanthus - a perennial energy grass in phytoremediation,” in Phytoremediation Potential of Perennial Grasses, V.C. Pandey and D. P. Singh, (Eds.), Elsevier, Amsterdam, 2020, pp. 79–95, doi: 10.1016/ B978-0-12-817732-7.00004-3.
[74] T. Vintila, A. Negrea, H. Barbu, R. Sumalana, and K. Kovacs, “Metal distribution in the process of lignocellulosic ethanol production from heavy metal contaminated sorghum biomass,” Journal of Chemical Technology & Biotechnology, vol. 91, pp. 1607-1614, 2016, doi: 10.1002/jctb.4902.
[75] C. P. G. G. Vimal, S. Pallavi, and R. Madhumita, Adaptive Phytoremediation Practices: Resilience to Climate Change, Elsevier Inc, 2022, pp. 299-301.
[76] S. K. Verma, K. Singh, A. K. Gupta, V. C. Pandey, P. Trivedi, R. K. Verma, and D. D. Patra, “Aromatic grasses for phytomanagement of coal fly ash hazards,” Ecological Engineering, vol. 73, pp. 425–428, 2014, doi: 10.1016/J.ECOLENG.2014.09.106.
[77] L. J. Quintans-Júnior et al., “Phytochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents,” Phytomedicine, vol. 15, no. 8, pp. 619–624, 2008, doi: 10.1016/j.phymed.2007.09.018.
[78] V. C. Pandey, A. Mishra, S. K. Shukla, and D. P. Singh, “7 - Reed canary grass (Phalaris arundinacea L.) - coupling phytoremediation with biofuel production,” in Phytoremediation Potential of Perennial Grasses. Elsevier, Amsterdam, 2020, pp. 165–177, doi: 10.1016/B978-0-12-817732-7.00007-9.
[79] H. A. K. Aqib et al., “Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass,” Journal of Environmental Management, vol. 326, pp. 1-11, 2022, doi: 10.1016/j.jenvman.2022.116700.
[80] Z. Liu and K. Tran, “A review on disposal and utilization of phytoremediation plants containing heavy metals,” Ecotoxicology and Environmental Safety, vol. 226, pp. 1-13, 2021, doi: 10.1016/j.ecoenv. 2021.112821.
DOI: https://doi.org/10.34238/tnu-jst.10273
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu