CẤU TRÚC VÀ ĐẶC TRƯNG TÍNH CHẤT CỦA ZrO2/CuO PHA TẠP Er3+ CHO XÚC TÁC QUANG PHÂN HỦY XANH METYLEN DƯỚI ÁNH SÁNG KHẢ KIẾN | Huấn | TNU Journal of Science and Technology

CẤU TRÚC VÀ ĐẶC TRƯNG TÍNH CHẤT CỦA ZrO2/CuO PHA TẠP Er3+ CHO XÚC TÁC QUANG PHÂN HỦY XANH METYLEN DƯỚI ÁNH SÁNG KHẢ KIẾN

Thông tin bài báo

Ngày nhận bài: 03/06/24                Ngày hoàn thiện: 10/07/24                Ngày đăng: 11/07/24

Các tác giả

Phạm Văn Huấn Email to author, Trường Đại học Điện lực

Tóm tắt


Ô nhiễm nước thải có chứa chất màu hữu cơ khó phân hủy là một vấn đề toàn cầu, phương pháp quang xúc tác đang là phương pháp nhiều ưu việt. Tuy nhiên các vật liệu quang xúc tác hiện nay chủ yếu có hoạt tính khi được chiếu sáng bởi bức xạ UV. Trong nghiên cứu này vật liệu nano composite ZrO2/CuO pha tạp Er3+ được tổng hợp bằng phương pháp đồng kết tủa, có hoạt tính quang xúc tác dưới ánh sáng khả kiến. Đặc tính của ZrO2/CuO:Er3+ được khảo sát bằng kính hiển vi (SEM), phổ tán sắc năng lượng tia X (EDS), (TEM), XRD, phổ phản xạ khuếch tán (DRS). Các hạt nanocomposite ZrO2/CuO:Er3+ thu được có đường kính trung bình khoảng 12 - 14 nm. XRD cho thấy ZrO2 hình thành pha tetragonal, CuO hình thành pha monoclinic. Tính chất quang xúc tác của vật liệu dưới ánh sáng mặt trời mô phỏng phân hủy 95% MB (20 mg.L−1) trong thời gian 210 phút với hằng số phân hủy là kapp = 6.87×10−3 min−1. Nghiên cứu cho thấy vật liệu nano composite ZrO2/CuO pha tạp Er3+ có tiềm năng ứng dụng trong lĩnh vực xử lý nước thải dệt nhuộm, xử lý ô nhiễm nước thải dưới ánh sáng mặt trời.

Từ khóa


Nano ZrO2/CuO:Er3+; Quang xúc tác; Đồng kết tủa; Xanh Methylene; Nanocomposite

Toàn văn:

PDF (English)

Tài liệu tham khảo


[1] S. E. Braslavsky, “Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006),” Pure Appl. Chem., vol. 79, no. 3, pp. 293–465, 2007.

[2] K. L. Chow et al., "Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants," Journal of hazardous materials, vol. 322, pp. 263-269, 2017.

[3] A. D. Mauro et al., "ZnO for application in photocatalysis: From thin films to nanostructures," Materials Science in Semiconductor Processing, vol. 69, pp. 44-51, 2017.

[4] S. R. Teeparthi, E. W. Awin, and R. Kumar, "Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity," Scientific reports, vol. 8, no. 1, 2018, Art. no. 5541.

[5] R. Wang et al., "Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants," Materials Science and Engineering: C, vol. 75, pp. 7-15, 2017.

[6] T. Linkevicius, "The Novel Design of Zirconium Oxide-Based Screw-Retained Restorations, Maximizing Exposure of Zirconia to Soft Peri-implant Tissues: Clinical Report After 3 Years of Follow-up," International Journal of Periodontics & Restorative Dentistry, vol. 37, no. 1, pp.41-48, 2017.

[7] K. Kaviyarasu et al., "Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye," Applied Surface Science, vol. 421, pp. 234-239, 2017.

[8] E. S. Agorku, A. T. Kuvarega, B. B. Mamba, A. C. Pandey, and A. K. Mishra, "Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine," Journal of Rare Earths, vol. 33, no. 5, pp. 498-506, 2015.

[9] B. Nanda, A. C. Pradhan, and K. M. Parida, "Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr (VI)," Chemical Engineering Journal, vol. 316, pp. 1122-1135, 2017.

[10] B. M. Alajmi et al., "Hierarchical mesoporous CuO/ZrO2 nanocomposite photocatalyst for highly stable photoinduced desulfurization of thiophene," Surfaces and Interfaces, vol. 39, 2023, Art. no. 102899.

[11] X. Chen et al., "Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2, 4-dinitrophenol," Applied Surface Science, vol. 407, pp. 470-47, 2017.

[12] L. Xu et al., "Investigation of optical bandgap variation and photoluminescence behavior in nanocrystalline CuO thin films," Optik-International Journal for Light and Electron Optics, vol. 158, pp. 382-390, 2018.

[13] N. Yahya et al., "A review of integrated photocatalyst adsorbents for wastewater treatment," Journal of Environmental Chemical Engineering, vol. 6, pp. 7411-7425, 2018.

[14] X. –N. Wang et al., "Two Self-Interpenetrating Copper (II)-Paddlewheel Metal–Organic Frameworks Constructed from Bifunctional Triazolate–Carboxylate Linkers," Crystal Growth & Design, vol. 18, no. 10, pp. 6204-6210, 2018.

[15] L. Renuka et al., "A simple combustion method for the synthesis of multi-functional ZrO2/CuO nanocomposites: Excellent performance as Sunlight photocatalysts and enhanced latent fingerprint detection," Applied Catalysis B: Environmental, vol. 210, pp. 97-115, 2017.

[16] L. Zhang, W. Z. Wang, S. M. Sun, Z. J. Zhang, J. H. Xu, and J. Ren, “Photocatalytic activity of Er3+, Yb3+ doped Bi5O7I,” Catalysis Communications, vol. 26, pp. 88–92, 2012.

[17] Y. Gao et al., "Facile Synthesis of GdF3: Yb3+, Er3+, Tm3+@ TiO2–Ag Core–Shell Ellipsoids Photocatalysts for Photodegradation of Methyl Orange Under UV, Visible, and NIR Light Irradiation," Journal of Nanoscience and Nanotechnology, vol. 18, no. 12, pp. 8216-8224, 2018.

[18] S. K. Ray et al., "Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4: Er3+/Yb3+/K+ microcrystals," Journal of Photochemistry and Photobiology A: Chemistry, vol. 339, pp. 36-48, 2017.

[19] Q. Ji et al., "Photocatalytic degradation of diesel pollutants in seawater by using ZrO2 (Er3+)/TiO2 under visible light," Journal of Environmental Chemical Engineering, vol. 5, no. 2, pp. 1423-1428, 2017.

[20] S. Bhaskar et al., "Design of nanoscaled heterojunctions in precursor-derived t-ZrO2/SiOC (N) nanocomposites: Transgressing the boundaries of catalytic activity from UV to visible light," Scientific Reports, vol. 10, no.1, 2020, Art. no. 430.

[21] R. D. Shannon, "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides," Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography, vol. 32, no. 5, pp. 751-767, 1976.

[22] K. M. Parida and D. Rath, "Structural properties and catalytic oxidation of benzene to phenol over CuO-impregnated mesoporous silica," Applied Catalysis A: General, vol. 321, no. 2, pp. 101-108, 2007.

[23] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Materials Research Bulletin, vol. 1, pp. 37-46, 1968.

[24] M. N. Chu et al., "Ce3+/Ce4+-Doped ZrO2/CuO nanocomposite for enhanced photocatalytic degradation of methylene blue under visible light," Toxics, vol. 10, no.8, p.463, 2022.




DOI: https://doi.org/10.34238/tnu-jst.10519

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved