HƯỚNG DẪN TỪNG BƯỚC THỰC HIỆN DOCKING PHÂN TỬ BẰNG CÔNG CỤ MIỄN PHÍ PyRx 0.8 VÀ DỰ ĐOÁN TƯƠNG TÁC CỦA CÁC DẪN XUẤT CHALCONE-AMIDE CHỐNG LẠI PLPRO SARS-COV-2
Thông tin bài báo
Ngày nhận bài: 29/06/24                Ngày hoàn thiện: 16/10/24                Ngày đăng: 17/10/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] World Health Organization, “Coronavirus Disease (COVID-2019) Situation Reports 176”. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. [Accessed Jun. 23, 2024].
[2] G. M. Morris and M. Lim-Wilby, “Molecular Docking,” in Molecular Modeling of Proteins, A. Kukol, Ed. Totowa, NJ: Humana Press, 2008, pp. 365-382, doi: 10.1007/978-1-59745-177-2_19.
[3] J. Fan, A. Fu, and L. Zhang, “Progress in molecular docking,” Quant Biol, vol. 7, no. 2, pp. 83-89, 2019, doi: 10.1007/s40484-019-0172-y.
[4] T. B. H. Bui, C. Q. Nguyen, and Q. D. Tran, “Docking-Based Virtual Screening for the Discovery of 1,3,4-Oxadiazoles as Aminoacyl-tRNA Synthetase Inhibitors,” CTU J. Inn. & Sus. Dev., vol. 14, no. 2, pp. 83-92, 2022, doi: 10.22144/ctu.jen.2022.021.
[5] Q. D. Tran et al., “ZIKV Inhibitors Based on Pyrazolo[3,4-d]pyridazine-7-one Core: Rational Design, In Vitro Evaluation, and Theoretical Studies,” ACS Omega, vol. 8, no. 51, pp. 48994-49008, 2023, doi: 10.1021/acsomega.3c06612.
[6] Q. D. Tran et al., “Rational design of novel diaryl ether-linked benzimidazole derivatives as potent and selective BACE1 inhibitors,” Biochemical and Biophysical Research Communications, vol. 698, 2024, Art. no. 149538, doi: 10.1016/j.bbrc.2024.149538.
[7] C. Q. Nguyen et al., “Structure-base DNA-targeting strategies with chalcone derivaties containing heterocyclic moiety as potential anti-cancer agents,” Can Tho University Journal of Science, vol. 59, no. 6, pp. 44-53, 2023, doi: 10.22144/ctujos.2023.213.
[8] C. Q. Nguyen et al., “Multitargeted molecular docking study of some N-hydroxycinnamamide compounds on ERα, PR, EGFR, and CK2 receptors,” Vietnam Journal of Science and Technology B, vol. 65, no. 6, pp. 47-51, 2023, doi: 10.31276/VJST.65(6).
[9] C. Q. Nguyen et al., “Synthesis and evaluation of biological activities of two belinostat analogs bearing fluorine at the CAP,” Science & Technology Development Journal: Natural Sciences, vol. 7, no. 1, pp. 2538-2547, 2023, doi: 10.32508/stdjns.v7i1.1238.
[10] S. Dallakyan and A. J. Olson, “Small-Molecule Library Screening by Docking with PyRx,” Chemical Biology: Methods and Protocols, pp. 243-250, 2015, doi: 10.1007/978-1-4939-2269-7_19.
[11] Y. M. Báez-Santos, S. E. St. John, and A. D. Mesecar, “The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds,” Antiviral Research, vol. 115, pp. 21-38, 2015, doi: 10.1016/j.antiviral.2014.12.015.
[12] C. Liu et al., “Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases,” ACS Cent. Sci., vol. 6, no. 3, pp. 315-331, 2020, doi: 10.1021/acscentsci.0c00272.
[13] M. Valipour, “Chalcone-amide, a privileged backbone for the design and development of selective SARS-CoV/SARS-CoV-2 papain-like protease inhibitors,” European Journal of Medicinal Chemistry, vol. 240, 2022, Art. no. 114572, doi: 10.1016/j.ejmech.2022.114572.
[14] K. Ratia et al., “A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication,” Proceedings of the National Academy of Sciences, vol. 105, no. 42, pp. 16119-16124, 2008, doi: 10.1073/pnas.0805240105.
[15] Z. Shen et al., “Potent, Novel SARS-CoV-2 PLpro Inhibitors Block Viral Replication in Monkey and Human Cell Cultures,” bioRxiv, 2021, doi: 10.1101/2021.02.13.431008.
[16] A. Peralta-Garcia et al., “Entrectinib—A SARS-CoV-2 Inhibitor in Human Lung Tissue (HLT) Cells,” International Journal of Molecular Sciences, vol. 22, no. 24, 2021, doi: 10.3390/ijms222413592.
[17] Z. Fu et al., “The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery,” Nat Commun, vol. 12, no. 1, p. 488, 2021, doi: 10.1038/s41467-020-20718-8.
[18] X. Gao et al., “Crystal structure of SARS-CoV-2 papain-like protease,” Acta Pharmaceutica Sinica B, vol. 11, no. 1, pp. 237-245, 2021, doi: 10.1016/j.apsb.2020.08.014.
[19] H. Shan et al., “Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2,” Cell chemical biology, vol. 28, no. 6, pp. 855-865, 2021.
[20] J. Osipiuk et al., “Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors,” Nat Commun, vol. 12, no. 1, p. 743, 2021, doi: 10.1038/s41467-021-21060-3.
[21] A. Douangamath et al., “Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease,” Nat Commun, vol. 11, no. 1, p. 5047, 2020, doi: 10.1038/s41467-020-18709-w.DOI: https://doi.org/10.34238/tnu-jst.10680
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu