MÀNG SINH HỌC TỪ CHITOSAN VÀ CELLULOSE VI TINH THỂ CHỨA ANTHOCYANINS ỨNG DỤNG THEO DÕI ĐỘ TƯƠI CỦA THỰC PHẨM
Thông tin bài báo
Ngày nhận bài: 02/07/24                Ngày hoàn thiện: 16/10/24                Ngày đăng: 17/10/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] H.-Z. Chen, M. Zhang, B. Bhandari, and Z. Guo, “Applicability of a colorimetric indicator label for monitoring freshness of fresh-cut green bell pepper,” Postharvest Biology and Technology, vol. 140, pp. 85-92, 2018.
[2] K. Chayavanich, P. Thiraphibundet, and A. Imyim, “Biocompatible film sensors containing red radish extract for meat spoilage observation,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 226, 2020, Art. no. 177601.
[3] H. Dong, Z. Ling, X. Zhang, X. Zhang, S. Ramaswamy, and F. Xu, “Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness,” Sensors and Actuators, B: Chemical, vol. 309, 2020, Art. no. 127752.
[4] W. Wang, M. Li, H. Li, X. Liu, T. Guo, G. Zhang, and Y. Xiong, “A renewable intelligent colorimetric indicator based on polyaniline for detecting freshness of tilapia,” Packaging Technology and Science, vol. 31, no. 3, pp. 133-140, 2018.
[5] X. Zhai, D. Lin, W. Li, and X. Yang, “Improved characterization of nanofibers from bacterial cellulose and its potential application in fresh-cut apples,” International Journal of Biological Macromolecules, vol. 149, pp. 178-186, 2020.
[6] S. Mohammadalinejhad, H. Almasi, and M. Moradi, “Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp,” Food Control, vol. 113, 2020, Art. no. 107169.
[7] W. Sun, Y. Liu, L. Jia, M. D. A. Saldaña, T. Dong, Y. Jin, and W. Sun, “A smart nanofibre sensor based on anthocyanin/poly-l-lactic acid for mutton freshness monitoring,” International Journal of Food Science & Technology, vol. 56, no. 1, pp. 342-351, 2021.
[8] H. E. Khoo, A. Azlan, S. T. Tang, and S. M. Lim, “Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits,” Food and Nutritrion Research, vol. 61, no. 1, 2017, doi: 10.1080/16546628.2017.1361779.
[9] H. -Z. Chen, M. Zhang, B. Bhandari, and C.-H. Yang, “Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness,” Food Hydrocolloid, vol. 100, 2020, Art. no. 105438.
[10] B. Kuswandi, Jayus, T. S. Larasati, A. Abdullah, and L. Y. Heng, “Real-Time Monitoring of Shrimp Spoilage Using On-Package Sticker Sensor Based on Natural Dye of Curcumin,” Food Analytical Methods, vol. 5, no. 4, pp. 881-889, 2012.
[11] A. T. S. Semeano, D. F. Maffei, S. Palma, R. W. C. Li, B. D. G. M. Franco, A. C. A. Roque, and J. Gruber, “Tilapia fish microbial spoilage monitored by a single optical gas sensor,” Food Control, vol. 89, pp. 72-76, 2018.
[12] X. Zhai, Z. Li, J. Shi, X. Huang, Z. Sun, D. Zhang, X. Zou, Y. Sun, J. Zhang, M. Holmes, Y. Gong, M. Povey, and S. Wang, “A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging,” Food Chemistry, vol. 290, pp. 135-143, 2019.
[13] J. G. d. Oliveira Filho, M. R. V. Bertolo, M. Á. V. Rodrigues, C. A. Marangon, G. d. C. Silva, F. C. A. Odoni, and M. B. Egea, “Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films,” Trends in Food Science & Technology, vol. 118, pp. 840-849, 2021.
[14] D. Neves, P. B. Andrade, R. A. Videira, V. de Freitas, and L. Cruz, “Berry anthocyanin-based films in smart food packaging: A mini-review,” Food Hydrocolloid, vol. 133, 2022, Art. no. 107885.
[15] A. Nopwinyuwong, S. Trevanich, and P. Suppakul, “Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage,” Talanta, vol. 81, no. 3, pp. 1126-1132, 2010.
[16] S. Roy, R. Priyadarshi, P. Ezati, and J.-W. Rhim, “Curcumin and its uses in active and smart food packaging applications - a comprehensive review,” Food Chemistry, vol. 375, 2022, Art. no. 131885.
[17] M. A. T. Phan, M. P. Bucknall, and J. Arcot, “Effects on intestinal cellular bioaccessibility of carotenoids and cellular biological activity as a consequence of co-ingestion of anthocyanin - and carotenoid-rich vegetables,” Food Chemistry, vol. 286, pp. 678-685, 2019.
[18] A. Demirbas, B. A. Welt, and I. Ocsoy, “Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity,” Material Letter, vol. 179, pp. 20-23, 2016.
[19] J. Yan, R. Cui, Y. Qin, L. Li, and M. Yuan, “A pH indicator film based on chitosan and butterfly pudding extract for monitoring fish freshness,” International Journal of Biological Macromolecules, vol. 177, pp. 328-336, 2021.
[20] D. Liu, Z. Cui, M. Shang, and Y. Zhong, “A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness,” Food Packaging and Shelf Life, vol. 28, 2021, Art. no. 100641.
[21] J. Liu, J. Huang, Y. Ying, L. Hu, and Y. Hu, “pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study,” International Journal of Biological Macromolecules, vol. 178, pp. 104-112, 2021.
[22] S. Rawdkuen, A. Faseha, S. Benjakul, and P. Kaewprachu, “Application of anthocyanin as a color indicator in gelatin films,” Food Bioscience, vol. 36, 2020, Art. no. 100603.
[23] H. Yong and J. Liu, “Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films,” Food Packaging and Shelf Life, vol. 26, 2020, Art. no. 100550.
[24] A. C. Sadiq, A. Olasupo, N. Y. Rahim, W. S. W. Ngah, M. A. K. M. Hanafiah, and F. B. M. Suah, “Fabrication and characterisation of novel chitosan-based polymer inclusion membranes and their application in environmental remediation,” International Journal of Biological Macromolecules, vol. 244, 2023, Art. no. 125400.
[25] R. S. De Queiroz Antonino, B. R. Lia Fook, V. A. De Oliveira Lima, R. Í. De Farias Rached, E. P. Lima, R. J. Da Silva Lima, C. A. Peniche Covas, and M. V. Lia Fook, Preparation and Characterization of Chitosan Obtained from Shells of Shrimp (Litopenaeus vannamei Boone). Marine Drugs, vol. 15, no. 1, 2017.
[26] T. Akter, J. Nayeem, A. Quadery, M. Razzaq, M. Uddin, M. Bashar, and M. Jahan, “Microcrystalline cellulose reinforced chitosan coating on kraft paper,” Cellulose Chemistry and Technology, vol. 54, pp. 95-102, 2020.
[27] S. C. Chie and M. K. A. Wahab, “Preparation and characterization of micro- crystalline cellulose/ chitosan films,” IOP Conference Series: Materials Science and Engineering, vol. 701, no. 1, 2019, Art. no. 012054.
[28] E. Ozen, N. Yildirim, B. Dalkılıç, and M. Ergün, “Effects of microcrystalline cellulose on some performance properties of chitosan aerogels,” Maderas: Ciencia y Tecnologia, vol. 23, pp. 1-10, 2021.
[29] S. C. Chie and M. K. A. Wahab, “Preparation and characterization of micro- crystalline cellulose/ chitosan films,” IOP Conference Series: Materials Science and Engineering, vol. 701, no. 1, 2019, Art. no. 012054.
[30] Z. Xiuju, S. Juncai, Y. Huajun, L. Zhidan, and T. Shaozao, “Mechanical Properties, Morphology, Thermal Performance, Crystallization Behavior, and Kinetics of PP/Microcrystal Cellulose Composites Compatibilized by Two Different Compatibilizers,” Journal of Thermoplastic Composite Materials, vol. 24, no. 6, pp. 735-754, 2011.DOI: https://doi.org/10.34238/tnu-jst.10692
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu