ĐÁNH GIÁ KHẢ NĂNG SINH TỔNG HỢP IAA VÀ HIỆU QUẢ ĐẾN SỰ NẨY MẦM HẠT NGÔ CỦA VI KHUẨN HÒA TAN PHOSPHATE CHỊU MẶN Pantoea sp. TTB4.1
Thông tin bài báo
Ngày nhận bài: 08/07/24                Ngày hoàn thiện: 16/10/24                Ngày đăng: 17/10/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. Bargaz, K. Lyamlouli, M. Chtouki, Y. Zeroual, and D. Dhiba, “Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system,” Frontiers in Microbiology, vol. 9, 2018, Art. no. 1606.
[2] H. H. Loc, M. L. Lixianb, E. Park, T. D. Dung, S. Shrestha, and Y. -J. Yoon. “How the saline water intrusion has reshaped the agricultural landscape of the Vietnamese Mekong Delta, a review,” Science of the Total Environment, vol. 794, 2021, Art. no. 148651.
[3] L. T. T. Dang, H. Ishidaira, and K. P. Nguyen. “Exploring the utility of the entropy method for classifying household livelihood vulnerability and adaptation strategies to salinity intrusion Impact - empirical evidence in coastal communities of the Vietnamese Mekong delta,” Environmental Development, vol. 47, 2023, Art. no. 100912.
[4] N. K. Nguyen, D. T. V. Vo, T. X. Le, L. W. Morton, H. T. Tran, J. Robatjazi, H. G. W. Lasar, and H. B. Tecimen, “Isolation, and selection of indigenous potassium solubilizing bacteria from Vietnam Mekong Delta rhizospheric soils and their effects on diverse cropping systems,” Biocatalysis and Agricultural Biotechnology, vol. 58, 2024, Art. no. 103200.
[5] A. B. Tran, T. A. T. Tran, V. T. Nguyen, C. T. Nguyen, V. K. T. Tran, V. B. N. Tran, and T. G. Tran, “Optimizing the culture conditions of a salt-tolerant bacterial strain capable of solubilizing phosphorus Pantoea sp. TTB4.1,” Journal of forestry science and technology, vol. 1, pp. 3-11, 2023.
[6] Y. Cui, Y. Zhao, R. Cai, H. Zhou, J. Chen, L. Feng, C. Guo, and D. Wang, “Isolation and identification of a phosphate‑solubilizing Pantoea dispersa with a saline–alkali tolerance and analysis of its growth‑promoting effects on silage maize under saline–alkali field conditions,” Current Microbiology, vol. 80, p. 291, 2023.
[7] Y. Gao, H. Zou, B. Wang, and F. Yuan, “Progress and applications of plant growth-promoting bacteria in salt tolerance of crops,” International Journal of Molecular Sciences, vol. 24, no. 13, p. 7036, 2022.
[8] P. Kumar, Sudesh, A. Kumar, and P. Suneja, “Studies on the physicochemical parameter’s optimization for indole-3-acetic acid production by Pantoea agglomerans CPHN2 using one factor at a time (OFAT) and response surface methodology (RSM),” Environmental Sustainability, vol. 6, pp. 35-44, 2023.
[9] S. Khianngam, P. Meetum, P. N. Chiangmai, and S. Tanasupawat, “Identification and optimisation of indole-3-acetic acid production of endophytic bacteria and their effects on plant growth,” Tropical Life Sciences Research, vol. 34, no. 1, pp. 219-239, 2023.
[10] F. Melini, F. Luziatelli, P. Bonini, A.G. Ficca, V. Melini, and M. Ruzzi, “Optimization of the growth conditions through response surface methodology and metabolomics for maximizing the auxin production by Pantoea agglomerans C1,” Frontiers in Microbiology, vol. 14, 2023, Art. no. 1022248.
[11] M. Cardarelli, S. L. Woo, Y. Rouphael, and G. Colla, “Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops,” Plants, vol. 11, no. 3, pp. 259, 2022.
[12] M. Amirkhani, H. S. Mayton, A. N. Netravali, and A. G. Taylor, “A seed coating delivery system for bio-based biostimulants to enhance plant growth,” Sustainability, vol. 11, 2019, Art. no. 5304.
[13] Y. Rouphael, M. Cardarelli, P. Bonini, and G. Colla, “Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity,” Frontiers in Plant Science, vol. 8, p. 131, 2017.
[14] Y. Q. Qiu, M. Amirkhani, H. Mayton, Z. Chen, and A. G. Taylor, “Biostimulant seed coating treatments to improve cover crop germination and seedling growth,” Agronomy, vol. 10, p. 154, 2020.
[15] C. T. Nguyen, V. T. Nguyen, T. A. T. Tran, V. K. T. Tran, and T. G. Tran, “Efficiency of nitrogen-fixing bacteria Bradyrhizobium sp. and phosphate-solubilizing bacteria Pseudomonas sp., Pantoea sp. on the growth of maize [Zea mays L.],” TNU Journal of Science and Technology, vol. 228, no. 05, pp. 455-462, 2023.
[16] E. Glickmann and Y. Dessaux, “A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria,” Applied and Environmental Microbiology, vol. 61, no. 2, pp. 793-796, 1995.
[17] I. Mahdi, M. Hafidi, A. Allaoui, and L. Biskri, “Halotolerant endophytic bacterium Serratia rubidaea ED1 enhances phosphate solubilization and promotes seed germination,” Agriculture, vol. 11, no. 3, pp. 224, 2021.
[18] C. S. Nautiyal, “An efficient microbiological growth medium for screening phosphate solubilizing microorganisms,” FEMS Microbiology Letters, vol. 170, no. 1, pp. 265-270, 1999.
[19] B. C. Walpola and M. H. Yoon, “Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake,” African Journal of Microbiology Research, vol. 7, no. 3, pp. 266-275, 2013.
[20] Q. K. Nguyen, N. H. Tran, V. T. Le, T. M. T. Le, H. H. Nguyen, C. N. Tran, D. T. Pham, and N. T. X. Ly, “Isolation, selection and identication of phosphate solubilizing, nitrogen fixing and IAA synthetizing bacteria from rhizosphere of Ming aralia (Polyscias fruticosa),” Journal of Vietnam Agricultural Science and Technology, vol. 05, no. 126, pp. 90-96, 2021.
[21] N. Bakonyi, S. Bott, E. Gajdos, A. Szabo, A. Jakab, B. Toth, P. Makleit, and Sz. Veres, “Using biofertilizer to improve seed germination and early development of maize,” Polish Journal of Environmental Studies, vol. 22, no. 6, pp. 1595-1599, 2013.
[22] M. Y. Adoko, H. Sina1, O. Amogou, N. A. Agbodjato, P. A. Noumavo, R. M. Aguégué, S. A. Assogba1, N. A. Adjovi, G. Dagbénonbakin, A. Adjanohoun, and L. Baba-Moussa, “Potential of biostimulants based on PGPB rhizobacteria native to benin’s soils on the growth and yield of maize (Zea mays L.) under greenhouse conditions,” Open Journal of Soil Science, vol. 11, no. 3, pp. 177-196, 2021.DOI: https://doi.org/10.34238/tnu-jst.10727
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu