TIỀM NĂNG CHỐNG OXY HOÁ CỦA CHIẾT XUẤT ETHANOL HAI LOÀI TẢO NÂU Turbinaria decurrens VÀ Turbinaria conoides PHÂN BỐ TẠI HÒN ĐẦM ĐƯỚC, TỈNH KIÊN GIANG
Thông tin bài báo
Ngày nhận bài: 18/07/24                Ngày hoàn thiện: 17/10/24                Ngày đăng: 18/10/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. J. S. Flora, “Arsenic-induced oxidative stress and its reversibility,” Free Radical Biology and Medicine, vol. 51, no. 2, pp. 257-281, 2011, doi: 10.1016/j.freeradbiomed.2011.04.008.
[2] V. Gnanavel, S. M. Roopan, and S. Rajeshkumar, “Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products,” Aquaculture, vol. 507, pp. 1-6, 2019, doi: 10.1016/j.aquaculture.2019.04.004.
[3] T. Rahman, I. Hosen, M. M. T. Islam, and H. U. Shekhar, “Oxidative stress and human health,” Advances in Bioscience and Biotechnology, vol. 03, no. 07, 2012, doi: 10.4236/abb.2012.327123.
[4] C. Hano and D. Tungmunnithum, “Plant Polyphenols, More than Just Simple Natural Antioxidants: Oxidative Stress, Aging and Age-Related Diseases,” Medicines, vol. 7, no. 5, 2020, doi: 10.3390/medicines7050026.
[5] S. Rattaya, S. Benjakul, and T. Prodpran, “Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand,” Int Aquat Res, vol. 7, no. 1, 2015, doi: 10.1007/s40071-014-0085-3.
[6] A. Ponnan, K. Ramu, M. Marudhamuthu, R. Marimuthu, K. Siva, and M. Kadarkarai, “Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz,” Clinical Phytoscience, vol. 3, no. 1, 2017, doi: 10.1186/s40816-017-0042-y.
[7] F. J. Sami, N. H. Soekamto, Firdaus, and J. Latip, “Total phenolic, antioxidant activity and toxicity effect of Turbinaria decurrens extracts from South Sulawesi,” Journal of Physics: Conference Series, vol. 1341, no. 3, p. 032008, 2019, doi: 10.1088/1742-6596/1341/3/032008.
[8] S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan, and H. R. Vasanthi, “In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga),” Food and Chemical Toxicology, vol. 48, no. 1, 2010, doi: 10.1016/j.fct.2009.09.036.
[9] K. Chakraborty, N. K. Praveen, K. K. Vijayan, and G. S. Rao, “Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar,” Asian Pac J Trop Biomed, vol. 3, no. 1, 2013, doi: 10.1016/S2221-1691(13)60016-7.
[10] R. M. Nguimbou, T. Boudjeko, N. Y. Njintang, M. Himeda, J. Scher, and C. M. F. Mbofung, “Mucilage chemical profile and antioxidant properties of giant swamp taro tubers,” Journal of food science and technology, vol. 51, pp. 3559-3567, 2014, doi: 10.1007/s13197-012-0906-6.
[11] J. Zhishen, T. Mengcheng, and W. Jianming, “The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals,” Food Chem, vol. 64, no. 4, 1999, doi: 10.1016/S0308-8146(98)00102-2.
[12] O. P. Sharma and T. K. Bhat, “DPPH antioxidant assay revisited,” Food Chem, vol. 113, no. 4, 2009, doi: 10.1016/j.foodchem.2008.08.008.
[13] P. Shah and H. A. Modi, “Comparative Study of DPPH, ABTS and FRAP Assays for Determination of Antioxidant Activity,” International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 3, no. 6, pp. 636-641, 2015.
[14] N. Chaves, A. Santiago, and J. C. Alías, “Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used,” Antioxidants, vol. 9, no. 1, 2020, doi: 10.3390/antiox9010076.
[15] S. Nazir et al., “Callus culture of Thai basil is an effective biological system for the production of antioxidants,” Molecules, vol. 25, no. 20, 2020, doi: 10.3390/molecules25204859.
[16] M. Genestra, “Oxyl radicals, redox-sensitive signalling cascades and antioxidants,” Cell Signal, vol. 19, no. 9, pp. 1807-1819, Sep. 2007, doi: 10.1016/J.CELLSIG.2007.04.009.
[17] R. A. El-Shenody, M. Ashour, and M. M. E. Ghobara, “Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa,” Brazilian Journal of Food Technology, vol. 22, 2019, doi: 10.1590/1981-6723.20318.
[18] E. A. Hasan, M. A. El-Hashash, M. K. Zahran, and H. M. El-Rafie, “Comparative study of chemical composition, antioxidant and anticancer activities of both Turbinaria decurrens Bory methanol extract and its biosynthesized gold nanoparticles,” J Drug Deliv Sci Technol, vol. 67, 2022, doi: 10.1016/j.jddst.2021.103005.
[19] G. A. Ismail, S. F. Gheda, A. M. Abo-Shady, and O. H. Abdel-Karim, “In vitro potential activity of some seaweeds as antioxidants and inhibitors of diabetic enzymes,” Food Science and Technology (Brazil), vol. 40, no. 3, 2020, doi: 10.1590/fst.15619.
[20] G. Sanger, L. K. Rarung, D. Wonggo, V. Dotulong, L. J. Damongilala, and T. E. Tallei, “Cytotoxic activity of seaweeds from North Sulawesi marine waters against cervical cancer,” J Appl Pharm Sci, vol. 11, no. 9, 2021, doi: 10.7324/JAPS.2021.110908.
[21] C. R. Delma, S. T. Somasundaram, G. P. Srinivasan, M. Khursheed, M. D. Bashyam, and N. Aravindan, “Fucoidan from turbinaria conoides: A multifaceted ‘deliverable’ to combat pancreatic cancer progression,” Int J Biol Macromol, vol. 74, 2015, doi: 10.1016/j.ijbiomac.2014.12.031.
[22] W. Boonchum et al., “Antioxidant activity of some seaweed from the Gulf of Thailand,” Int J Agric Biol, vol. 13, no. 1, pp. 95-99, 2011.
[23] Z. Zhang, F. Wang, X. Wang, X. Liu, Y. Hou, and Q. Zhang, “Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro,” Carbohydr Polym, vol. 82, no. 1, 2010, doi: 10.1016/j.carbpol.2010.04.031.
[24] O. Honey, S. A. I. Nihad, M. A. Rahman, M. M. Rahman, M. Islam, and M. Z. R. Chowdhury, “Exploring the antioxidant and antimicrobial potential of three common seaweeds of Saint Martin’s Island of Bangladesh,” Heliyon, vol. 10, no. 4, 2024, doi: 10.1016/j.heliyon.2024.e26096.
[25] Y. Li et al., “Furbellow (Brown algae) extract increases lifespan in Drosophila by interfering with TOR-signaling,” Nutrients, vol. 12, no. 4, 2020, doi: 10.3390/nu12041172.
[26] E. Lashmanova et al., “Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans,” Pharmacol Res, vol. 100, 2015, doi: 10.1016/j.phrs.2015.08.009.DOI: https://doi.org/10.34238/tnu-jst.10783
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu