TĂNG CƯỜNG PHÁT XẠ ÁNH SÁNG 1540 NM CỦA STRONTI THAY THẾ HYDROXYAPATITE/BETA-TRICALCIUM PHOSPHATE PHA TẠP ERBI
Thông tin bài báo
Ngày nhận bài: 05/08/24                Ngày hoàn thiện: 26/11/24                Ngày đăng: 27/11/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 µm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett., vol. 97, pp. 141109-141109-3, 2010, doi: 10.1063/1.3499654.
[2] R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 µm,” Appl. Phys. Lett., vol. 95, pp. 111109-111109-3, 2009, doi: 10.1063/1.3224203.
[3] X. Liu, B. Mei, and G. Tan, “Investigation of the sensitization effect of Yb3+ in Yb, Er co-doped Sr5(PO4)3F transparent ceramics: From single-band red up conversion to temperature sensing behavior,” Journal of the European Ceramic Society, vol. 44, pp. 7855-7866, 2024, doi: 10.1016/j.jeurceramsoc.2024.05.078.
[4] H. Q. Ye, Z. Li, Y. Peng, C. C. Wang, T. Y. Li, Y. X. Zheng, A. Sapelkin, G. Adamopoulos, I. Hernández, P. B. Wyatt, and W. P. Gillin, “Organo-erbium systems for optical amplification at telecommunications wavelengths,” Nature Mater., vol. 13, pp. 382-386, 2014, doi: 10.1038/nmat3910.
[5] O. Savchyn, R. M. Todi, K. R. Coffey, and P. G. Kik, “High-temperature optical properties of sensitized Er3+ in Si-rich SiO2 – implications for gain performance,” Opt. Mater., vol. 32, pp. 1274-1278, 2010, doi: 10.1016/j.optmat.2010.04.037.
[6] B. Garrido, C. García, S. Y. Seo, P. Pellegrino, D. Navarro-Urrios, N. Daldosso, L. Pavesi, F. Gourbilleau, and R. Rizk, “Excitable Er fraction and quenching phenomena in Er-doped SiO2 layers containing Si nanoclusters,” Phys. Rev. B, vol. 76, pp. 245308-245308-15, 2007, doi: 10.1103/PhysRevB.76.245308.
[7] J. C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev., vol. 34, pp. 1048-1077, 2005, doi: 10.1039/B406082M.
[8] Q. Zhong, H. Wang, G. Qian, Z. Wang, J. Zhang, J. Qiu, and M. Wang, “Novel stoichiometrically erbium− ytterbium cocrystalline complex exhibiting enhanced near-infrared luminescenc,” Inorg. Chem., vol. 45, pp. 4537-4543, 2006, doi: 10.1021/ic051697y.
[9] J. Wu, J. L. Coffer, Y. Wang, and R. Schulze, “Oxidized Germanium as a Broad-Band Sensitizer for Er-Doped SnO2 Nanofibers,” J. Phys. Chem. C, vol. 113, pp. 12-16, 2009, doi: 10.1021/jp8080996.
[10] Z. Xia, H. Liu, X. Li, and C. Liu, “Identification of the crystallographic sites of Eu2+ in Ca9NaMg(PO4)7: structure and luminescence properties study,” Dalton Trans.. vol. 42, pp. 16588-16595, 2013, doi: 10.1039/C3DT52232F.
[11] J. P. Gittings, C. R. Bowen, A. C. E. Dent, I. G. Turner, F. R. Baxter, and J. B. Chaudhuri, “Electrical characterization of hydroxyapatite-based bioceramics,” Acta Biomaterialia, vol. 5, pp. 743-754, 2009, doi: 10.1016/j.actbio.2008.08.012.
[12] L. Stipniece, S. Wilson, J. M. Curran, R. Chen, K. S. Ancane, P. K. Sharma, B. J. Meenan, and A. R. Boyd, “Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation,” Ceramics International, vol. 47, pp. 3368-3379, 2021, doi: 10.1016/j.ceramint.2020.09.182.
[13] M. S. Collin, A. Sharma, A. Bhattacharya, and S. Sasikumar, “Synthesis of strontium substituted hydroxyapatite by solution combustion route,” Journal of the Indian Chemical Society, vol. 98, p. 100191, 2021, doi: 10.1016/j.jics.2021.100191.
[14] A. M. Dias, and I. D. N. Canhas, C. G. O. Bruziquesi, M. G. Speziali, R. D. Sinisterra, and M. E. Cortés, “Magnesium (Mg2+), Strontium (Sr2+), and Zinc (Zn2+) Co‑substituted Bone Cements Based on Nano‑hydroxyapatite/ Monetite for Bone Regeneration,” Biological Trace Element Research, vol. 201, pp. 2963-2981, 2023, doi: 10.1007/s12011-022-03382-5.
[15]Y. Zhuang, A. Liu, S. Jiang, U. Liaqat, K. Lin, W. Sun, and C. Yuan, “Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic,” Materials & Design, vol. 234, p. 112313, 2023, doi: 10.1016/j.matdes.2023.112313.
[16] C. Zhang, C. Li, S. Huang, Z. Hou, Z. Cheng, P. Yang, C. Peng, and J. Lin, “Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery,” Biomaterials, vol. 31, pp. 3374-3383, 2010, doi: 10.1016/j.biomaterials.2010.01.044.
[17] R. E. Ouenzerfi, N. Kbir-Ariguib, M. Trabelsi-Ayedi, and B. Piriou, “Spectroscopic study of Eu3+ in strontium hydroxyapatite Sr10(PO4)6(OH)2,” J. Lumin., vol. 85, pp. 71-77, 1999, doi: 10.1016/S0022-2313(99)00149-0.
[18] V. H. Pham, H. N. Van, P. D. Tam, and H. N. T. Ha, “A novel 1540 nm light emission from erbium doped hydroxyapatite/β-tricalcium phosphate through co-precipitation method,” Mater. Lett., vol. 167, pp. 145-147, 2016, doi: 10.1. 016/j.matlet.2016.01.002.
[19] B. O. Fowler, E. C. Moreno, and W. E. Brown, “Infra-red spectra of hydroxyapatite, octacalcium phosphate and pyrolysed octacalcium phosphate,” Arch. Oral Bid., vol. 11, pp. 477-492, 1966, doi: 10.1016/0003-9969(66)90154-3.
[20] F. H. Lin, C. J. Liao, K. S. Chen, and J. S. Sun, “Preparation of high-temperature stabilized β-tricalcium phosphate by heating deficient hydroxyapatite with Na4P2O7·10H2O addition,” Biomaterials, vol. 19, pp. 1101-1107, 1998, doi: 10.1016/S0142-9612(98)00040-4.
[21] H. Monma, S. Ueno, and T. Kanazawa, “Properties of hydroxyapatite prepared by the hydrolysis of tricalcium phosphate,” J. Chem. Tech. Biotechnol., vol. 31, pp. 15-24. 1981, doi: 10.1002/jctb.503310105.
[22] A. Mortier, J. Lemaitre, and P. G. Rouxhet, “Temperature-programmed characterization of synthetic calcium-deficient phosphate apatites,” Thermachimia Acta, vol. 143, pp. 265-282, 1989, doi: 10.1016/0040-6031(89)85065-8.
[23] F. R.O. Silva, N. B. Lima, S. N. Guilhen, L. C. Courrol, and A. H. A. Bressiani, “Evaluation of europium-doped HA/β-TCP ratio fluorescence in biphasic calcium phosphate nanocomposites controlled by the pH value during the synthesis,” J. Lumin., vol. 180, pp. 177-182, 2016, doi: 10.1016/j.jlumin.2016.08.030.
[24] C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chanéac, “Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging,” J. Lumin., vol. 170, pp. 460-466, 2016, doi: 10.1016/j.jlumin.2015.07.024.
[25] S. Ogo, A. Onda, Y. Iwasa, K. Hara, A. Fukuoka, and K. Yanagisawa, “1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios,” J. Catalysis, vol. 296, pp. 24-30, 2012, doi: 10.1016/j.jcat.2012.08.019.
[26] J. Wu and J. L. Coffer, “Emissive erbium-doped silicon and germanium oxide nanofibers derived from an electrospinning process,” Chem. Mater., vol. 19, pp. 6266-6276, 2007, doi: 10.1021/cm702226x.
[27] H. Hayash, N. Sugimoto, S. Tanabe, and S. Ohara, “Effect of hydroxyl groups on erbium-doped bismuth-oxide-based glasses for fiber amplifiers,” J. Appl. Phys., vol. 99, pp. 093105-093105-8, 2006, doi: 10.1063/1.2192267.
[28] X. Feng, S. Tanabe, and T. Hanada, “Hydroxyl groups in erbium-doped germanotellurite glasses,” J. Non- Cryst. Solids, vol. 281, pp. 48-54, 2001, doi: 10.1016/S0022-3093(00)00429-4.
[29] P. K. Sekhar, A. R. Wilkinson, R. G. Elliman, T.H. Kim, and S. Bhansali, “Erbium emission from nanoengineered silicon surface,” J. Phys. Chem. C, vol. 112, pp. 20110-20113, 2008, doi: 10.1021/jp808462j
[30] Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett., vol. 71, pp. 2922-2924, 1997, doi: 10.1063/1.120216.
DOI: https://doi.org/10.34238/tnu-jst.10869
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu