MỘT PHƯƠNG PHÁP LẶP TỰ THÍCH NGHI XẤP XỈ NGHIỆM BÀI TOÁN CHẤP NHẬN TÁCH TRONG KHÔNG GIAN HILBERT
Thông tin bài báo
Ngày nhận bài: 06/10/24                Ngày hoàn thiện: 03/12/24                Ngày đăng: 03/12/24Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] Y. Censor and T. Elfving, “A multiprojection algorithm using Bregman projections in a product
space,” Numerical Algorithms, vol. 8, pp. 221–239, 1994.
[2] R. Suparatulatorn, P. Charoensawan, and K. Poochinapan, “Inertial self-adaptive algorithm for
solving split feasible problems with applications to image restoration,” Mathematical Methods
in the Applied Sciences, vol. 42, no. 18, pp. 7268-7284, 2019.
[3] G. Lopez,´ V. Martın-M´ arquez,´ F. Wang, and H. K. Xu, “Solving the split feasibility problem
withoutprior knowledgeofmatrixnorms,” Inverse Problems, vol.28,no. 8, 2012, Art. no.085004.
[4] Y. Censor, T. Bortfeld, B. Martin, and A. Trofiov, “A unifid approach for inversion problems in intensity-modulated radiation therapy,” Physics in Medicine and Biology, vol. 51, no. 10, pp. 2353–2365, 2006.
[5] J. Wang, Y. Hu, C. Li, and J. C. Yao, “Linear convergence of CQ algorithms and applications in gene regulatory network inference,” Inverse Problems, vol. 33, no. 5, 2017, Art.no. 055017.
[6] C. Byrne, “Iterative oblique projection onto convex sets and the split feasibility problem,” Inverse Problems, vol. 18, pp. 441-453, 2002.
[7] H. K. Xu, “Strong convergence of an iterative method for nonexpansive and accretive operators,” Journal of Mathematical Analysis and Applications, vol. 314, pp. 631–643, 2006.
[8] Q. Yang, “The relaxed CQ algorithm for solving the split feasibility problem,” Inverse Problems, vol. 20, no. 4, pp. 1261-1266, 2005.
[9] M. H. Nguyen and T. H. Tran, “A self-adaptive iterative algorithm for solving the split variational inequality problem in Hilbert spaces,” TNU Journal ofScience and Technology, vol. 227, no. 7, pp. 56-64, 2022.
[10] T. D. Nguyen and T. H. Pham, “A strong convergence and numerical illustration for the iterative methods to solve a split common null point problem and a variational inequality in Hilbert spaces,” TNU Journal ofScience and Technology, vol. 226, no. 15, pp. 20-27, 2021.
[11] T. N. Nguyen and T. T. Nguyen, “An iterative algorithm for fiding the minimum norm point in the solution set of split fied point problem,” TNU Journal ofScience and Technology, vol. 226, no. 6, pp. 57-66, 2021.
[12] B. Nguyen and D. N. Nguyen, “Weak and strong convergence theorems of algorithmic schemes for the multiple-sets split feasibility problem,” TNU Journal of Science and Technology, vol. 226, no. 15, pp. 28-35, 2021.
[13] T. N. Chu and T. T. Nguyen, “A self-adaptive iterative algorithm for solving a class of bilevel
split variational inequality problem in Hilbert spaces,” TNU Journal ofScience and Technology
vol. 228, no. 10, pp. 491-499, 2023.
[14] T. T. T. Nguyen and T. N. Nguyen, “A new iterative method for solving the multiple-set split
variational inequality problem in Hilbert spaces,” Optimization, vol. 72, no. 6, pp. 1549–1575,
2022.
[15] T. T. T. Nguyen and T. T. Tran, “A self adaptive inertial algorithm for solving variational
inequalities over the solution set of the split variational inequality problem,” Optimization
Letters, vol. 18, pp. 1619–1645, 2023.
[16] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, 2nd edition. New York, USA: Springer International Publishing, 2017.
[17] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge, UK: Cambridge
University Press, 1990.
[18] P. E. Mainge, “Strong convergence of projected subgradient methods for nonsmooth and´
nonstrictly convex minimization,” Set-Valued Analysis, vol. 16, pp. 899–912, 2008.
DOI: https://doi.org/10.34238/tnu-jst.11256
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu