ĐÁNH GIÁ KHẢ NĂNG TIÊU DIỆT BỌ TRĨ FRANKLINIELLA SPP. CỦA HỆ NHŨ NANO BẢN CHẤT LIPID CHỨA TINH DẦU XẠ HƯƠNG VÀ HỆ NHŨ NANO BẢN CHẤT LIPID CHỨA TINH DẦU HÚNG QUẾ | Tuân | TNU Journal of Science and Technology

ĐÁNH GIÁ KHẢ NĂNG TIÊU DIỆT BỌ TRĨ FRANKLINIELLA SPP. CỦA HỆ NHŨ NANO BẢN CHẤT LIPID CHỨA TINH DẦU XẠ HƯƠNG VÀ HỆ NHŨ NANO BẢN CHẤT LIPID CHỨA TINH DẦU HÚNG QUẾ

Thông tin bài báo

Ngày nhận bài: 09/10/24                Ngày hoàn thiện: 06/02/25                Ngày đăng: 07/02/25

Các tác giả

1. Nguyễn Võ Duy Tuân Email to author, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân
2. Vũ Ngọc Bích Đào, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân
3. Trần Thị Ngọc Mai, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân
4. Trịnh Ngọc Ái, Trường Đại học Trà Vinh
5. Nguyễn Thị Huỳnh Nga, Khoa sinh học - Trường Đại học Đà Lạt
6. Nguyễn Minh Hiệp, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân

Tóm tắt


Nghiên cứu này đánh giá và so sánh khả năng tiêu diệt ấu trùng và con trưởng thành của bọ trĩ Frankliniella spp. trong điều kiện in vitro của hệ nhũ nano bản chất lipid chứa tinh dầu xạ hương và hệ nhũ nano bản chất lipid chứa tinh dầu húng quế. Hai hệ LN-X và LN-H được tổng hợp bằng phương pháp đồng hóa tốc độ cao kết hợp với giảm kích thước bằng sóng siêu âm. Cả LN-X và LN-H đều có kích thước hạt trung bình nhỏ hơn 150 nm và khá đồng đều về mặt kích thước, giá trị tuyệt đối thế zeta lớn hơn 53 mV và có độ bền cao. Kết quả cho thấy cả LN-X và LN-H đều có khả năng tiêu diệt bọ trĩ Frankliniella spp. ở cả hai giai đoạn ấu trùng và giai đoạn trưởng thành. LN-X ở độ pha loãng 150 lần (tương ứng với nồng độ tinh dầu là 667 µg/mL) cho hiệu quả tiêu diệt cao nhất. Kết quả cũng cho thấy cả 2 hệ nano này đều không gây độc tính cho cây trồng. Do đó, hai hệ nano này có tiềm năng lớn để tạo ra chế phẩm sinh học phòng trị bọ trĩ Frankliniella spp. giúp hỗ trợ phát triển nông nghiệp sạch tại Việt Nam.

Từ khóa


Diệt côn trùng; Frankliniella spp.; Hệ nhũ nano bản chất lipid; Tinh dầu húng quế; Tinh dầu xạ hương

Toàn văn:

PDF

Tài liệu tham khảo


[1] Z. He, J.-F. Guo, S. R. Reitz, Z.-R Lei, and S.-Y. Wu, “A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management,” Insect Science, vol. 27, pp. 626-645, 2020.

[2] W. B. Hunter and D. E. Ullman, “Analysis of mouthpart movements during feeding of Frankliniella occidentalis (pergande) and F. schultzei trybom (Thysanoptera: Thripidae),” International Journal of Insect Morphology and Embryology, vol. 18, pp. 61-171, 1989.

[3] J. G. Morse and M. S. Hoddle, “Invasion biology of thrips,” Annual Review of Entomology, vol. 51, pp. 67-89, 2006.

[4] P. Bielza, “Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis,” Pest Management Science, vol. 64, pp. 1131-1138, 2010.

[5] Y. Gao, Z. Lei, and S. R. Reitz, “Western flower thrips resistance to insecticides: detection, mechanisms and management strategies,” Pest Management Science, vol. 68, pp. 1111-1121, 2012.

[6] M. A. Healey, L. J. Senior, P. H. Brown, and J. Duff, “Relative abundance and temporal distribution of adult Frankliniella occidentalis (Pergande) and Frankliniella schultzei (Trybom) on French bean, lettuce, tomato and zucchini crops in relation to crop age,” Journal of Asia-Pacific Entomology, vol. 20, pp. 859-865, 2017.

[7] T. H. Dao, T. H. Nguyen, D. V. Nguyen, T. P. Bui, S. H. Phung, N. H. Le, V. L. Nguyen, M. N. Le, H. Y. Nguyen, A. D. Vu, and V. L. Pham, “The Records of Thrips Species (Thysanoptera: Thripidae) Attacking Citrus in Some Northern Provinces in 2020-2021,” (in Vietnamese), Journal of Plant Protection, vol. 6, pp. 18-24, 2022.

[8] G. A. Herron, R. V. Gunning, E. L. Cottage, V. Borzatta, and C. Gobbi “Spinosad resistance, esterase isoenzymes and temporal synergism in Frankliniella occidentalis (Pergande) in Australia,” Pesticide Biochemistry and Physiology, vol. 114, pp. 32-37, 2014.

[9] D. G. Li, X. Y. Shang, S. R. Reitz, R. Nauen, Z. R. Lei, and S. H. Lee, “Field resistance to spinosad in western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae),” Journal of Integrative Agriculture, vol. 15, pp. 2803-2808, 2016.

[10] M. H. Nguyen, T. H. N. Nguyen, T. N. M. Tran, N. B. D. Vu, and T. T. Tran, “Comparison of the nematode-controlling effectiveness of 10 different eessential oil-encapsulated lipid nanoemulsions,” Archives of Phytopathology and Plant Protection, vol. 55, pp. 420-432, 2022.

[11] E. Stepanycheva, M. Petrova, T. Chermenskaya, and R. Pavela, “Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg,” Environmental Science and Pollution Research, vol. 26, no. 30, pp. 30885-30892, 2019.

[12] K. H. Kim, C. G. Yi, Y. J. Ahn, S. I. Kim, S. G. Lee, and I. R. Kim, “Fumigant toxicity of basil oil compounds and related compounds to Thrips palmi and Orius strigicollis,” Pest Management Science, vol. 71, no. 9, pp. 1292-1296, 2014.

[13] J. Wang and Z. Q. Liu, “Foliar uptake of pesticides Present status and future challenge,” Pesticide Biochemistry and Physiology, vol. 87, pp. 1-8, 2007.

[14] M. H. Nguyen, N. B. D. Vu, T. H. N. Nguyen, T. N. M. Tran, H. S. Le, T. T. Tran, X. C. Le, V. T. Le, N. T. T. Nguyen, and N. A. Trinh, “Effective biocontrol of nematodes using lipid nanoemulsions co-encapsulating chili oil, cinnamon oil and neem oil,” International Journal of Pest Management, vol. 69, pp. 1-10, 2020.

[15] M. H. Nguyen, T. N. M. Tran, and N. B. D. Vu, “Antifungal activity of essential oil-encapsulated lipid nanoemulsions formulations against leaf spot disease on tomato caused by Alternaria alternata,” Archives of Phytopathology and Plant Protection, vol. 55, no. 2, pp. 235-257, 2022.

[16] B. E. Price, C. Raffin, S. H. Yun, K. V. Graham, and M. Y. Choi, “A sustainable mass rearing method for Western Flower Thrips, Frankliniella occidentalis (Thysanoptera: Thripidae),” Florida Entomologist, vol. 105, no. 2, pp. 170-173, 2022.

[17] M. H. Nguyen, I. C. Hwang, J. W. Park, and H. J. Park, “Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with com oil as liquid lipid,” Journal of Microencapsulation, vol. 29, pp. 596-604, 2012.

[18] E. B. Manaia, M. P. Abuçafy, B. G. Chiari-Andréo, B. L. Silva, J. A. O. Junior, and L. A. Chiavacci, “Physicochemical characterization of drug nanocarriers,” International Journal of Nanomedicine, vol. 12, pp. 4991-5011, 2017.

[19] S. Peneder and E. H. Koschier, “Toxic and behavioural effects of carvacrol and thymol on Frankliniella occidentalis larvae,” Journal of Plant Diseases and Protection, vol. 118, pp. 26-30, 2011.

[20] H. E. Mahmoud, N. H. Bashir, and Y.O. Assad, “Effect of basil (Ocimum basilicum) leaves powder and ethanolic-extract on the 3rd larval instar of Anopheles arabiensis (Patton, 1905) (Culicidae: Diptera),” Journal of Scientific Research, vol. 4, no. 2, pp. 52-56, 2017.

[21] M. Kırışık, “Determination of fumigant toxicity of single, binary and tertiary mixtures of three essential oils against Frankliniella occidentalis Pergande (Thysanoptera: Thripidae),” Journal of Plant Diseases and Protection, vol. 130, pp. 1293-1300, 2023.

[22] T. N. M. Tran, N. B. D. Vu, and M. H. Nguyen, “Antifungal activity of essential oil-encapsulated lipid nanoemulsions against Neopestalotiopsis rosae causing leaf spot on strawberry,” Journal of Plant Diseases and Protection, vol. 130, pp. 823-832, 2023.




DOI: https://doi.org/10.34238/tnu-jst.11271

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved