ĐÁNH GIÁ KHẢ NĂNG ỨNG DỤNG CỦA CHIẾU XẠ GAMMA TRONG BẢO QUẢN MỰC IN 3D RAU XÀ LÁCH | Thủy | TNU Journal of Science and Technology

ĐÁNH GIÁ KHẢ NĂNG ỨNG DỤNG CỦA CHIẾU XẠ GAMMA TRONG BẢO QUẢN MỰC IN 3D RAU XÀ LÁCH

Thông tin bài báo

Ngày nhận bài: 11/10/24                Ngày hoàn thiện: 13/11/24                Ngày đăng: 13/11/24

Các tác giả

1. Lê Thị Thu Thủy, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân Đà Lạt
2. Trần Thị Ngọc Mai, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân Đà Lạt
3. Vũ Ngọc Bích Đào, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân Đà Lạt
4. Phạm Hồ Thuật Khoa, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân Đà Lạt
5. Nguyễn Thị Huỳnh Nga, Trường Đại học Đà Lạt
6. Nguyễn Minh Hiệp Email to author, Trung tâm Công nghệ bức xạ và Công nghệ sinh học - Viện Nghiên cứu hạt nhân Đà Lạt

Tóm tắt


Nghiên cứu được thực hiện nhằm mục tiêu đánh giá khả năng ứng dụng phương pháp chiếu xạ gamma trong việc kéo dài thời gian bảo quản đối với mực in 3D rau củ quả nói chung và rau xà lách nói riêng. Trong nghiên cứu này, mẫu mực in 3D từ rau xà lách kết hợp với hydrocolloid được chiếu xạ và được đánh giá về các chỉ tiêu hóa, sinh, khả năng in và độ bền cơ học của mực thực phẩm. Kết quả nghiên cứu cho thấy chiếu xạ ở liều 7 kGy làm giảm đáng kể tổng số vi sinh vật hiếu khí có trong mẫu và kéo dài thời gian sử dụng của mẫu mực in đến 14 ngày nhưng không làm ảnh hưởng đến hàm lượng chất rắn hòa tan, hàm lượng nước có trong mẫu, cũng như không làm ảnh hưởng đến khả năng in và độ ổn định về mặt cơ học của mẫu mực in 3D. Bên cạnh đó, kết quả cũng đã chứng minh việc chiếu xạ không gây ảnh hưởng nhiều đến hàm lượng chlorophyll, β-carotene và màu sắc của mẫu mực in 3D rau xà lách so với mẫu đối chứng (mẫu không được chiếu xạ). Từ đó cho thấy, phương pháp chiếu xạ có tiềm năng ứng dụng trong việc bảo quản mực in 3D rau củ quả nói chung và rau xà lách nói riêng, giúp phát triển lĩnh vực in 3D thực phẩm.

Từ khóa


Mực in 3D; Hydrocolloid; Chiếu xạ; Rau xà lách; Bảo quản

Toàn văn:

PDF

Tài liệu tham khảo


[1] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D printing and customized additive manufacturing,” Chemical Reviews, vol. 117, no. 15, pp. 10212-10290, 2017.

[2] D. Periard, N. Schaal, M. Schaal, E. Malone, and H. Lipson, “Printing food,” in Proceedings of the 18th Solid Freeform Fabrication Symposium, Austin, TX, USA, 2007, pp. 564-574.

[3] T. Pereira, S. Barroso, and M. M. Gil, “Food texture design by 3D printing: A review,” Foods, vol. 10, no. 2, p. 320, 2021.

[4] H. W. Kim, J. H. Lee, S. M. Park, M. H. Lee, et al., “Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing,” Journal of Food Science, vol. 83, no. 12, pp. 2923-2932, 2018.

[5] S. L. Voon, J. An, G. Wong, Y. Zhang, and C. K. Chua, “3D food printing: A categorised review of inks and their development,” Virtual and Physical Prototyping, vol. 14, no. 3, pp. 203-218, 2019.

[6] I. Tomašević, P. Putnik, F. Valjak, B. Pavlić, et al., “3D printing as novel tool for fruit-based functional food production,” Current Opinion in Food Science, vol. 41, pp. 138-145, 2021.

[7] E. M. Brouwer-Brolsma, B. Brandl, M. E. Buso, T. Skurk, and C. Manach, “Food intake biomarkers for green leafy vegetables, bulb vegetables, and stem vegetables: a review,” Genes & Nutrition, vol. 15, no. 1, pp. 1-12, 2020.

[8] M. J. Kim, Y. Moon, J. C. Tou, B. Mou, and N. L. Waterland, “Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.),” Journal of Food Composition and Analysis, vol. 49, pp. 19-34, 2016.

[9] S. A. Mir, M. A. Shah, M. M. Mir, B. N. Dar, et al., “Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens,” Food Control, vol. 85, pp. 235-244, 2018.

[10] C. K. Carstens, J. K. Salazar, and C. Darkoh, “Multistate outbreaks of foodborne illness in the United States associated with fresh produce from 2010 to 2017,” Frontiers in Microbiology, vol. 10, p. 2667, 2019.

[11] M. S. Rahman, “Food preservation: an overview,” in Handbook of Food Preservation, CRC Press, 2020, pp. 7-18.

[12] S. K. Amit, M. M. Uddin, R. Rahman, S. R. Islam, and M. S. Khan, “A review on mechanisms and commercial aspects of food preservation and processing,” Agriculture & Food Security, vol. 6, pp. 1-22, 2017.

[13] S. Sharma, “Food preservatives and their harmful effects,” International Journal of Scientific and Research Publications, vol. 5, no. 4, pp. 1-2, 2015.

[14] V. P. Singh, “Recent approaches in food bio-preservation-a review,” Open Veterinary Journal, vol. 8, no. 1, pp. 104-111, 2018.

[15] H. M. Lung, Y. C. Cheng, Y. H. Chang, H. W. Huang, et al., “Microbial decontamination of food by electron beam irradiation,” Trends in Food Science & Technology, vol. 44, no. 1, pp. 66-78, 2015.

[16] T. Prokopov and S. Tanchev, “Methods of food preservation,” in Food Safety: A Practical and Case Study Approach, vol. 1, pp. 3-25, 2007.

[17] A. Pant, A. Y. Lee, R. Karyappa, C. P. Lee, et al., “3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients,” Food Hydrocolloids, vol. 114, p. 106546, 2021.

[18] M. Pérez-Patricio, J. L. Camas-Anzueto, A. Sanchez-Alegría, A. Aguilar-González, et al., “Optical method for estimating the chlorophyll contents in plant leaves,” Sensors (Basel, Switzerland), vol. 18, no. 2, p. 650, 2018.

[19] M. Hagos, M. Redi-Abshiro, B. S. Chandravanshi, and E. E. Yaya, “Development of analytical methods for determination of β-carotene in pumpkin (Cucurbita maxima) flesh, peel, and seed powder samples,” International Journal of Analytical Chemistry, vol. 2022, p. 9363692, 2022.

[20] I. Viera, M. Herrera, and M. Roca, “Influence of food composition on chlorophyll bioaccessibility,” Food Chemistry, vol. 386, p. 132805, 2022.

[21] S. Pareek, N. A. Sagar, S. Sharma, V. Kumar, et al., “Chlorophylls: Chemistry and biological functions,” in Fruit and Vegetable Phytochemicals: Chemistry and Human Health, E. M. Yahia,
Ed., 2nd ed. John Wiley & Sons, 2017, pp. 269-284.

[22] L. Calucci, C. Pinzino, M. Zandomeneghi, A. Capocchi, et al., “Effects of γ-irradiation on the free radical and antioxidant contents in nine aromatic herbs and spices,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 927-934, 2003.

[23] R. Khalili, N. Ayoobian, M. Jafarpour, and B. Shirani, “The effect of gamma irradiation on the properties of cucumber,” Journal of Food Science and Technology, vol. 54, no. 13, pp. 4277-4283, 2017.

[24] B. Maherani, M. Harich, S. Salmieri, and M. Lacroix, “Antibacterial properties of combined non-thermal treatments based on bioactive edible coating, ozonation, and gamma irradiation on ready-to-eat frozen green peppers: evaluation of their freshness and sensory qualities,” European Food Research and Technology, vol. 245, pp. 1095-1111, 2019.

[25] J. Seow, R. Ágoston, L.Phua, and H. G. Yuk, “Microbiological quality of fresh vegetables and fruits sold in Singapore,” Food Control, vol. 25, no. 1, pp. 39-44, 2012.

[26] M. Kumar, S. Ahuja, A. Dahuja, R. Kumar, and B. Singh, “Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene,” Journal of Radioanalytical and Nuclear Chemistry, vol. 301, pp. 871-880, 2014.

[27] Z. Liu, M. Zhang, B. Bhandari, and C. Yang, “Impact of rheological properties of mashed potatoes on 3D printing,” Journal of Food Engineering, vol. 220, pp. 76-82, 2018.




DOI: https://doi.org/10.34238/tnu-jst.11284

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved