ẢNH HƯỞNG CỦA XỬ LÝ BỀ MẶT TỚI ĐỘ NHÁM VÀ TÍNH THẤM ƯỚT CỦA TITAN ĐỊNH HƯỚNG ỨNG DỤNG TRONG Y SINH
Thông tin bài báo
Ngày nhận bài: 03/11/24                Ngày hoàn thiện: 26/11/24                Ngày đăng: 26/11/24Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] Y. Q. Liang, Z. D. Cui, S. L. Zhu, and X. J. Yang, "Characterization of self-organized TiO2 nanotubes on Ti–4Zr–22Nb–2Sn alloys and the application in drug delivery system," J. Mater Sci.: Mater Med., vol. 22, pp. 461-467, 2011.
[2] C. Moseke, F. Hage, E. Vorndran, and U. Gbureck, "TiO2 nanotube arrays deposited on Ti substrate by anodic, oxidation and their potential as a long-term drug delivery system for antimicrobial agents," Applied Surface Science, vol. 258, pp. 5399-5404, 2012.
[3] S. Kahar, A. Singh, V. Patel, and U. Kanetkar, "Anodizing of Ti and Ti Alloys for Different Applications: A Review," IJSRD - International Journal for Scientific Research & Development, vol. 8, no. 5, pp. 272 - 276, 2020.
[4] K. Mustafa, J. Wroblewsk, B. S. Lopez, A. Wennerberg, K. Hultenby, and K. Arvidson, "Determining optimal surface roughness of TiO2 blasted titanium by implant material for attachment proliferation and differentiation of cells derived from human mandibular alveolar bone," Clin. Oral Impl. Res., vol. 12, pp. 515-525, 2001.
[5] S. M. S. Tilebon, S. A. Emamian, H. Ramezanpour, H. Yousefi, M. Özcan, S. M. Naghib, Y. Zare, and K. E. Rhee, "Intelligent modeling and optimization of titanium surface etching for dental implant application," Sci. Rep., vol. 12, 2022, Art. no. 7184.
[6] R. Kohler, K. Sowards, and H. Medina, "Numerical model for acid-etching of titanium: Engineering surface roughness for dental implants," Journal of Manufacturing Processes, vol. 59, pp. 113-121, 2020.
[7] K.Y. Hung, Y. C. Lin, and H. P. Feng, "The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials," Materials, vol. 10, 2017, Art. no. 1164.
[8] M. L. Nascimento, W. D. Mueller, A. C. Carvalho, and H. M. Tomás, "Electrochemical characterization of titanium biomaterials using the Mini-cell System," J. Mater Sci., vol. 41, pp. 3323-3327, 2006.
[9] A. Göransson, E. Jansson, P. Tengvall, and A. Wennerberg, "Bone formation after 4 weeks around blood-plasma-modified titanium implants with varying surface topographies: an in vivo study," Biomaterials, vol. 24, pp. 197-205, 2003.
[10] A. Bagno and C. D. Bello, "Surface treatments and roughness properties of Ti-based biomaterials," Journal of Materials Science: Materials in Medicine, vol. 15, pp. 935-949, 2004.
[11] X. X. Wang, S. Hayakawa, K. Tsuru, and A. Osaka, "A comparative study of in vitro apatite deposition on heat, H2O2 , and NaOH treated titanium surfaces," J. Biomed. Mater. Res., vol. 54, pp. 172-178, 2001.
[12] X. X Wang, S. Hayakawa, K. Tsuru, and A. Osaka, "Improvement of bioactivity of H2O2/TaCl5 treated titanium after subsequent heat treatments," J. Biomed. Mater. Res., vol. 52, pp.171-176, 2000.
[13] M. Bezuidenhouta, G. T. Haarb, and T. Beckerb, "The effect of HF-HNO3 chemical polishing on the surface roughness and fatigue life of laser powder bed fusion produced Ti-6Al-4V," Materials Today Communications, vol. 25, 2020, Art. no. 10139.
[14] A. Gristina, "Biomaterial-centered infection, microbial adhesion versus tissue integration," Science, vol. 237, pp. 1588-1595, 1987.
[15] Y. Oshida, A. Hashem, T. Nishihara, and M. V. Yapchulay, "Fractal dimension analysis of mandibular bones: towards a morphological compatibility of implants," Bone Mater. Eng., vol. 4, pp. 397-407, 1994.
[16] L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, and C. Lagneau, "Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour," Materials Science and Engineering C, vol. 23, pp. 551-560, 2003.
DOI: https://doi.org/10.34238/tnu-jst.11468
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu