NÂNG CAO HIỆU QUẢ XỬ LÝ THUỐC NHUỘM CỦA NANOCOMPOSITES ZrO2@GO PHA TẠP Bi3+ BẰNG PHƯƠNG PHÁP THUỶ NHIỆT HỖ TRỢ SIÊU ÂM
Thông tin bài báo
Ngày nhận bài: 27/11/24                Ngày hoàn thiện: 03/01/25                Ngày đăng: 04/01/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] P. Nuengmatcha, P. Porrawatkul, S. Chanthai, P. Sricharoen, and N. Limchoowong, “Enhanced photocatalytic degradation of methylene blue using Fe2O3/graphene/CuO nanocomposites under visible light,” J. Environ. Chem. Eng., vol. 7, no. 6, 2019, Art. no. 103438, doi: 10.1016/j.jece.2019.103438.
[2] Z. Jing, Y. Li, Y. Zhang, M. Wang, Y. Sun, K. Chen, B. Chen, S. Zhao, Y. Jin, Q. Du, X. Pi, and Y. Wang, “Enhanced methylene blue adsorption using zirconate alginate/graphene oxide/UiO-67 aerogel spheres: Synthesis, characterization, kinetic studies, and adsorption mechanisms,” Int. J. Biol. Macromol., vol. 238, 2023, Art. no. 124044, doi: 10.1016/j.ijbiomac.2023.124044.
[3] J. Xie, Y. He, B. Liu, and H. Wang, “A novel insight of photodegradation of dye mixture by surface analysis,” Catal. Commun., vol. 120, pp. 101-105, Feb. 2019, doi: 10.1016/j.catcom.2018.09.008.
[4] C. Diaz-Uribe, J. Florez, W. Vallejo, F. Duran, E. Puello, V. Roa, E. Schott, and X. Zarate, “Removal and photocatalytic degradation of methylene blue on ZrO2 thin films modified with Anderson-Polioxometalates (Cr3+, Co3+, Cu2+): An experimental and theoretical study,” J. Photochem. Photobiol. A Chem., vol. 454, Sep. 2024, doi: 10.1016/j.jphotochem.2024.115689.
[5] M. A. Arayesh, A. H. Kianfar, and G. Mohammadnezhad, “Synthesis of Fe3O4/ZrO2/ZnO nanoparticle for enhancing visible light photocatalytic and antibacterial activity,” J. Taiwan Inst. Chem. Eng., vol. 153, Dec. 2023, doi: 10.1016/j.jtice.2023.105213.
[6] A. Varghese, K. R. S. Devi, D. Pinheiro, and J. Jomy, “Electrochemical investigations of chitosan/ZrO2-Bi2O3 composite for advanced energy and environmental applications,” J. Environ. Chem. Eng., vol. 12, no. 5, 2024, Art. no. 113824, doi: 10.1016/j.jece.2024.113824.
[7] I. M. Sharaf, J. Laifi, S. Alraddadi, M. Saad, M. S. I. Koubesy, N. N. Elewa, H. Almohiy, and Y. M. Ismail, “Unraveling the effect of Cu doping on the structural and morphological properties and photocatalytic activity of ZrO2,” Heliyon, vol. 10, no. 1, 2024, Art. no. e23848, doi: 10.1016/j.heliyon.2023.e23848.
[8] P. Manikanta, N. S. Naik, A. M. Isloor, M. Padaki, B. M. Nagaraja, and S. Déon, “The efficacy of Fe-doped ZrO2 nanoparticles as a supplement in polysulfone membranes for toxic dye removal,” Process Saf. Environ. Prot., vol. 186, pp. 1460-1470, 2024, doi: 10.1016/j.psep.2024.04.083.
[9] S. P. Keerthana, R. Yuvakkumar, P. S. Kumar, G. Ravi, and D. Velauthapillai, “Nd doped ZrO2 photocatalyst for organic pollutants degradation in wastewater,” Environ. Technol. Innov., vol. 28, 2022, Art. no. 102851, doi: 10.1016/j.eti.2022.102851.
[10] C. Gionco, S. Hernandez, M. Castellino, T. A. Gadhi, J. A. Munoz-Tabares, E. Cerrato, A. Tagliaferro, N. Russo, and M. C. Paganini, “Synthesis and characterization of Ce and Er doped ZrO2 nanoparticles as solar light driven photocatalysts,” J. Alloys Compd., vol. 775, pp. 896-904, Feb. 2019, doi: 10.1016/j.jallcom.2018.10.046.
[11] E. S. Agorku, A. T. Kuvarega, B. B. Mamba, A. C. Pandey, and A. K. Mishra, “Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine,” J. Rare Earths, vol. 33, no. 5, pp. 498-506, May 2015, doi: 10.1016/S1002-0721(14)60447-6.
[12] J. Xie, L. Huang, R. Wang, S. Ye, and X. Song, “Novel visible light-responsive graphene oxide/Bi2WO6/starch composite membrane for efficient degradation of ethylene,” Carbohydr. Polym., vol. 246, 2020, Art. no. 116640, doi: 10.1016/j.carbpol.2020.116640.
[13] K. Sharma, V. Dutta, S. Sharma, P. Raizada, A. Hosseini-Bandegharaei, P. Thakur, and P. Singh, “Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: A review,” J. Ind. Eng. Chem., vol. 78, pp. 1-20, 2019, doi: 10.1016/j.jiec.2019.06.022.
[14] J. H. Lee, P. Velmurugan, A. V. Ravi, and B. T. Oh, “Green and hydrothermal assembly of reduced graphene oxide (rGO)-coated ZnO and Fe hybrid nanocomposite for the removal of nitrate and phosphate,” Environ. Chem. Ecotoxicol., vol. 2, pp. 141-149, 2020, doi: 10.1016/j.enceco.2020.08.001.
[15] K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G. T. Mola, J. Kennedy, and M. Maaza, “Photocatalytic activity of ZrO2 doped lead dioxide nanocomposites: Investigation of structural and optical microscopy of RhB organic dye,” Appl. Surf. Sci., vol. 421, pp. 234-239, 2017, doi: 10.1016/j.apsusc.2016.11.149.
[16] P. Halder, I. Mondal, A. Mukherjee, S. Biswas, S. Sau, S. Mitra, B. K. Paul, D. Mondal, B. Chattopadhyay, and S. Das, “Te4+ and Er3+ doped ZrO2 nanoparticles with enhanced photocatalytic, antibacterial activity and dielectric properties: A next generation of multifunctional material,” J. Environ. Manage., vol. 359, 2024, Art. no. 120985, doi: 10.1016/j.jenvman.2024.120985.
[17] N. C. Manh, A. D. T. Tu, T. M. Xuan, L. N. T. Hien, N. B. Duc, L. N. T. To, D. H. T. Bach, L. T. Ha, and H. P. Van, “Enhanced Visible-Light Photocatalytic Degradation Efficiency of Ce4+ -Doped ZrO2/ZnO Nanocomposites Fabricated by a Simple Hydrothermal Method,” J. Electron. Mater., vol. 53, pp. 7655-7671, 2024, doi: 10.1007/s11664-024-11460-8.
DOI: https://doi.org/10.34238/tnu-jst.11618
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu