XÂY DỰNG MÔ HÌNH LAI CNN-LSTM DỰ BÁO NGẮN HẠN CÔNG SUẤT PHÁT CHO NHÀ MÁY ĐIỆN MẶT TRỜI NHỊ HÀ
Thông tin bài báo
Ngày nhận bài: 03/12/24                Ngày hoàn thiện: 03/01/25                Ngày đăng: 04/01/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] T. H. T. Nguyen, N. V. Pham, Q. B. Phan, V. N. N. Nguyen, H. M. Pham, and N. Q. Tran, “Short-term Forecasting of Solar Radiation Using a Hybrid Model of CNN-LSTM Integrated with EEMD,” in 2022 6th International Conference on Green Technology and Sustainable Development (GTSD), Jul. 2022, pp. 854-859, doi: 10.1109/GTSD54989.2022.9988761.
[2] A. Agga, A. Abbou, M. Labbadi, Y. E. Houm, and I. H. Ou Ali, “CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production,” Electric Power Systems Research, vol. 208, Jul. 2022, Art. no. 107908, doi: 10.1016/j.epsr.2022.107908.
[3] E. Erdem and J. Shi, “ARMA based approaches for forecasting the tuple of wind speed and direction,” Applied Energy, vol. 88, no. 4, pp. 1405-1414, Apr. 2011, doi: 10.1016/j.apenergy.2010.10.031.
[4] M. Poncela, P. Poncela, and J. R. Perán, “Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting,” Applied Energy, vol. 108, pp. 349-362, Aug. 2013, doi: 10.1016/j.apenergy.2013.03.041.
[5] Y. Li, Y. Su, and L. Shu, “An ARMAX model for forecasting the power output of a grid connected photovoltaic system,” Renewable Energy, vol. 66, pp. 78-89, Jun. 2014, doi: 10.1016/j.renene.2013.11.067.
[6] T. H. T. Nguyen, N. V. Pham, V. K. Ngo, and X. B. Do, “A Comparative Study of Machine Learning–based Models for Short-Term Multi-step Forecasting of Solar Power: An Application for Nhi Ha Solar Farm,” Measurement, Control, and Automation, vol. 5, no. 1, Apr. 2024, Art. no. 1.
[7] M. Q. Raza, M. Nadarajah, and C. Ekanayake, “On recent advances in PV output power forecast,” Solar Energy, vol. 136, pp. 125-144, Oct. 2016, doi: 10.1016/j.solener.2016.06.073.
[8] D. T. Nguyen, D. H. Do, G. Fujita, and T. S. Tran, “Multi 2D-CNN-based model for short-term PV power forecast embedded with Laplacian Attention,” Energy Reports, vol. 12, pp. 2086-2096, Dec. 2024, doi: 10.1016/j.egyr.2024.08.020.
[9] H. Shi, M. Xu, and R. Li, “Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5271-5280, Sep. 2018, doi: 10.1109/TSG.2017.2686012.
[10] Bitexco Power, “Nhi Ha,” 2023. [Online]. Available: https://bitexcopower.com.vn/projects/nhi-ha/. [Accessed Dec. 30, 2024].
[11] M.-F. Li, X.-P. Tang, W. Wu, and H.-B. Liu, “General models for estimating daily global solar radiation for different solar radiation zones in mainland China,” Energy Conversion and Management, vol. 70, pp. 139-148, Jun. 2013, doi: 10.1016/j.enconman.2013.03.004.
[12] C. Liu, W. Li, C. Hu, T. Xie, Y. Jiang, R. Li, S. Soomro, and Y. Xu, “Research on runoff process vectorization and integration of deep learning algorithms for flood forecasting,” Journal of Environmental Management, vol. 362, Jun. 2024, Art. no. 121260, doi: 10.1016/j.jenvman.2024.121260.
[13] V. R. Joseph, “Optimal ratio for data splitting,” Statistical Analysis, vol. 15, no. 4, pp. 531-538, Aug. 2022, doi: 10.1002/sam.11583.
[14] Z. Wang, Y. Wei, and S. Wang, “Forecasting the carbon price of China’s national carbon market: A novel dynamic interval-valued framework,” Energy Economics, vol. 141, Jan. 2025, Art. no. 108107, doi: 10.1016/j.eneco.2024.108107.
[15] Y. Liang, D. Zhang, J. Zhang, and G. Hu, “A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model,” Energy, vol. 313, Dec. 2024, Art. no. 133826, doi: 10.1016/j.energy.2024.133826.
DOI: https://doi.org/10.34238/tnu-jst.11648
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu