CHẾ TẠO CẢM BIẾN KHÔNG ENZYME GRAPHENE/ITO BẰNG PHƯƠNG PHÁP LẮNG ĐỌNG ĐIỆN DI XÁC ĐỊNH AXIT URIC | Hiến | TNU Journal of Science and Technology

CHẾ TẠO CẢM BIẾN KHÔNG ENZYME GRAPHENE/ITO BẰNG PHƯƠNG PHÁP LẮNG ĐỌNG ĐIỆN DI XÁC ĐỊNH AXIT URIC

Thông tin bài báo

Ngày nhận bài: 07/12/24                Ngày hoàn thiện: 17/02/25                Ngày đăng: 17/02/25

Các tác giả

1. Trịnh Ngọc Hiến, 1) Trường Đại học Công nghệ Thông tin và Truyền thông – ĐH Thái Nguyên 2) Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
2. Đặng Văn Thành, 1) Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam 2) Trường Đại học Y Dược – ĐH Thái Nguyên
3. Nguyễn Xuân Hòa, Trường Đại học Y Dược – ĐH Thái Nguyên
4. Nguyễn Văn Đăng, 1) Học viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam 2) Trường Đại học Khoa học – ĐH Thái Nguyên
5. Nguyễn Quốc Dũng, Trường Đại học Sư phạm – ĐH Thái Nguyên
6. Phạm Văn Hảo Email to author, Trường Đại học Công nghệ Thông tin và Truyền thông – ĐH Thái Nguyên

Tóm tắt


Bài báo này trình bày kết quả chế tạo điện cực biến tính Graphene/ITO bằng phương pháp lắng đọng điện di graphene lên đế ITO, ứng dụng làm cảm biến không enzyme xác định axit uric. Hình thái và cấu trúc của graphene cũng như Graphene/ITO được mô tả bằng kính hiển vi điện tử quét và quang phổ Raman. Đặc trưng điện hóa được khảo sát để đánh giá tiềm năng ứng dụng của vật liệu. Các kết quả cho thấy cảm biến chế tạo có phạm vi tuyến tính và độ nhạy với hai khoảng tương ứng là: khoảng thứ nhất có nồng độ từ 10–100 µM (R2 = 0,99763), độ nhạy tương ứng là 0,22094 (µAcm–2µM–1); khoảng tuyến tính thứ hai từ 100–2000 µM (R2 = 0,99617), độ nhạy tương ứng là 0,05462 (µAcm–2µM–1). Kết quả này gợi mở nhiều tiềm năng ứng dụng trong các xét nghiệm sinh hóa.

Từ khóa


Graphene; Graphite; Cảm biến điện hóa; Axit Uric; Lắng đọng điện di

Toàn văn:

PDF

Tài liệu tham khảo


[1] C. Liu, P. Han, Z. Xie, Z. Xu, and D. Wei, "Insights into Ag (I)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity," RSC advances, vol. 8, no. 70, pp. 40338-40346, 2018.

[2] J. E. Villa and R. J. Poppi, "A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution," Analyst, vol. 141, no. 6, pp. 1966-1972, 2016.

[3] F. Chen, B. Fang, and S. Wang, "A fast and validated HPLC method for simultaneous determination of dopamine, dobutamine, phentolamine, furosemide, and aminophylline in infusion samples and injection formulations," Journal of Analytical Methods in Chemistry, vol. 2021, no. 1, 2021, Art. no. 8821126.

[4] V. Carrera, E. Sabater, E. Vilanova, and M.A. Sogorb, "A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures," Journal of Chromatography B, vol. 847, no. 2, pp. 88-94, 2007.

[5] K. Sasaki and M. Harada, "Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste," PLoS One, vol. 15, no. 12, 2020, Art. no. e0244140.

[6] L. Lin, P. Qiu, L. Yang, X. Cao, and L. Jin, "Determination of dopamine in rat striatum by microdialysis and high-performance liquid chromatography with electrochemical detection on a functionalized multi-wall carbon nanotube electrode," Analytical and Bioanalytical Chemistry, vol. 384, pp. 1308-1313, 2006.

[7] A. Roychoudhury, K. A. Francis, J. Patel, S. K. Jha, and S. Basu, "A decoupler-free simple paper microchip capillary electrophoresis device for simultaneous detection of dopamine, epinephrine and serotonin," RSC advances, vol. 10, no. 43, pp. 25487-25495, 2020.

[8] S. B. Matt, M. Shivanna, S. Manjunath, M. Siddalinganahalli, and D. M. Siddalingappa, "Electrochemical detection of serotonin using t-ZrO2 nanoparticles modified carbon paste electrode," Journal of The Electrochemical Society, vol. 167, no. 15, 2020, Art. no. 155512.

[9] K. E. Kouadio, O. Kambiré, K. S. Koffi, and L. Ouattara, "Electrochemical oxidation of paracetamol on boron-doped diamond electrode: analytical performance and paracetamol degradation," Journal of Electrochemical Science and Engineering, vol. 11, no. 2, pp. 71-86, 2021.

[10] D. R. Kumar, M. L. Baynosa, G. Dhakal, and J.-J. Shim, "Sphere-like Ni3S4/NiS2/MoOx composite modified glassy carbon electrode for the electrocatalytic determination of d-penicillamine," Journal of Molecular Liquids, vol. 301, 2020, Art. no. 112447.

[11] H. Huang, M. Yan, C. Yang, H. He, Q. Jiang, L. Yang, Z. Lu, Z. Sun, X. Xu, and Y. Bando, "Graphene nanoarchitectonics: recent advances in graphene‐based electrocatalysts for hydrogen evolution reaction," Advanced Materials, vol. 31, no. 48, 2019, Art. no. 1903415.

[12] G. Reina, J. M. González-Domínguez, A. Criado, E. Vázquez, A. Bianco, and M. Prato, "Promises, facts and challenges for graphene in biomedical applications," Chemical Society Reviews, vol. 46, no. 15, pp. 4400-4416, 2017.

[13] V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, and R. Zboril, "Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications," Chemical Reviews, vol. 116, no. 9, pp. 5464-5519, 2016.

[14] C.-F. Wang, X.-Y. Sun, M. Su, Y.-P. Wang, and Y.-K. Lv, "Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules," Analyst, vol. 145, no. 5, pp. 1550-1562, 2020.

[15] Q. D. Nguyen, Q. T. Tran, H. C. Pham, V. N. Lam, V. D. Nguyen, N. H. Trinh, and V. T. Dang, "Straightforward method for the electrochemical identification of dopamine in the presence of uric acid and ascorbic acid," Measurement Science and Technology, vol. 35, no. 5, 2024, Art. no. 055114.

[16] W.S. Hummers and R.E. Offeman, "Offeman, Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339-1339, 1958.

[17] V. T. Dang, P. O. Phung, T. H. Do, and H. P. Le, "Ultrasonic-assisted cathodic electrochemical discharge for graphene synthesis," Ultrasonics Sonochemistry, vol. 34, pp. 978-983, 2017.

[18] A.M. Abdelkader, C. Vallés, A. J. Cooper, I. A. Kinloch, and R. A. W. Dryfe, "Alkali Reduction of Graphene Oxide in Molten Halide Salts: Production of Corrugated Graphene Derivatives for High-Performance Supercapacitors," ACS Nano, vol. 8, no. 11, pp. 11225-11233, 2014.

[19] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, "Open and Closed Edges of Graphene Layers," Physical Review Letters, vol. 102, no. 1, 2009, Art. no. 015501.

[20] V. T. Dang, L.-J. Li, C.-W. Chu, P.-J. Yen, and K.-H. Wei, "Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets," RSC Advances, vol. 4, no. 14, pp. 6946-6949, 2014.

[21] M. Coros, F. Pogacean, M.-C. Rosu, C. Socaci, G. Borodi, L. Magerusan, A.R. Biris, and S. Pruneanu, "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods," RSC Advances, vol. 6, no. 4, pp. 2651-2661, 2016.

[22] V. V. Singh, G. Gupta, A. Batra, A. K. Nigam, M. Boopathi, P. K. Gutch, B. K. Tripathi, A. Srivastava, M. Samuel, G. S. Agarwal, B. Singh, and R. Vijayaraghavan, "Greener Electrochemical Synthesis of High Quality Graphene Nanosheets Directly from Pencil and its SPR Sensing Application," Advanced Functional Materials, vol. 22, no. 11, pp. 2352-2362, 2012.

[23] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation," Carbon, vol. 47, no. 14, pp. 3242-3246, 2009.

[24] A. J. Cooper, N. R. Wilson, I. A. Kinloch, and R. A. W. Dryfe, "Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations," Carbon, vol. 66, pp. 340-350, 2014.

[25] Y. Zhang, L. Zhang, and C. Zhou, "Review of chemical vapor deposition of graphene and related applications," Accounts of Chemical Research, vol. 46, no.10, pp. 2329-2339, 2013.

[26] M. Coroş, F. Pogăcean, M.-C. Roşu, C. Socaci, G. Borodi, L. Mageruşan, A. R. Biriş, and S. Pruneanu, "Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods," RSC Advances, vol. 6, no. 4, pp. 2651-2661, 2016.

[27] T. Lin, J. Chen, H. Bi, D. Wan, F. Huang, X. Xie, and M. Jiang, "Facile and economical exfoliation of graphite for mass production of high-quality graphene sheets," Journal of Materials Chemistry A, vol. 1, no. 3, pp. 500-504, 2013.

[28] M. Wang, H. Guo, N. Wu, J. Zhang, T. Zhang, B. Liu, Z. Pan, L. Peng, and W. Yang, "A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 634, 2022, Art. no. 127928.

[29] A. Ambrosi and M. Pumera, "Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications," Chemistry – A European Journal, vol. 22, no. 1, pp. 153-159, 2016.

[30] N. T. K. Nguyen, Y. N. T. Dang, A. H. Nguyen, M. V. Tran, and H. V. Le, "Sciences, Electrochemical sensor for detection of uric acid using screen-printed electrodes modified with NiO/PANI-Graphene," Science & Technology Development Journal, vol. 7, no. 4, pp. 2729-2737, 2023.

[31] Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang, and S. J. S. R. Sun, "A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode," Scientific Reports, vol. 10, no.1, 2020, Art. no.10607.

[32] S. Verma, J. Choudhary, K. P. Singh, P. Chandra, and S. P. Singh, "Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples," International Journal of Biological Macromolecules, vol. 130, pp. 333-341, 2019.

[33] S. Jain, S. Verma, S. P. Singh, and S. N. J. B. Sharma, "An electrochemical biosensor based on novel butylamine capped CZTS nanoparticles immobilized by uricase for uric acid detection," Biosens Bioelectron, vol. 127, pp. 135-141, 2019.

[34] S. Rajendrachari, H. Arslanoglu, A. Yaras, and S. M. J. A. O. Golabhanvi, "Electrochemical Detection of Uric Acid Based on a Carbon Paste Electrode Modified with Ta2O5 Recovered from Ore by a Novel Method," ACS, vol. 8, no. 49, pp. 46946-46954, 2023.

[35] T. N. Vo, D. M. Tran, Q. M. Nguyen, T. H. T. Pham, and Q. K. Dinh, "Electrochemical detection of uric acid and xanthine in human urine using the Co/UiO-66 modified glassy carbon electrode," Springer Nature, vol. 54, pp. 1-16, 2024.




DOI: https://doi.org/10.34238/tnu-jst.11663

Các bài báo tham chiếu

  • Hiện tại không có bài báo tham chiếu
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
Phòng 408, 409 - Tòa nhà Điều hành - Đại học Thái Nguyên
Phường Tân Thịnh - Thành phố Thái Nguyên
Điện thoại: 0208 3840 288 - E-mail: jst@tnu.edu.vn
Phát triển trên nền tảng Open Journal Systems
©2018 All Rights Reserved