MỘT THUẬT TOÁN HỘI TỤ YẾU CHO BẤT ĐẲNG THỨC BIẾN PHÂN TRÊN KHÔNG GIAN HILBERT
Thông tin bài báo
Ngày nhận bài: 29/12/24                Ngày hoàn thiện: 17/02/25                Ngày đăng: 19/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] S. Karamardian, “Complementarity problems over cones with monotone and pseudomonotone maps,” J. Optim. Theor y Appl., vol. 18, pp. 445–454, 1976.
[2] D. Kinderlehrer and G. Stampacchia, “An introduction to variational inequalities and their
applications,” SIAM Review, vol. 23, no. 4, pp. 539–543, 1981.
[3] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[4] C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Applications to
Free-Boundary Problems, Wiley & Sons, 1984.
[5] M.V. Solodov and P. Tseng, “Modified projection-type methods for monotone variational inequalities,” SIAM J. Control Optim., vol. 34, pp. 1814–1830, 1996.
[6] G. M. Korpelevich, “Exstragradient method to find saddle points and other problems,”
Ekonomika i Mat. Metody, vol. 12, no. 4, pp. 747–756, 1976.
[7] I.V. Konnov, Combined Relaxation Methods for Variational Inequalities, Springer, Berlin,
2001.
[8] Y.V. Malitsky, “Projected reflected gradient methods for monotone variational inequalities,”
SIAM J. Optim., vol. 25, pp. 502–520, 2015.
[9] T.N. Chu and T.T. Nguyen, “A self-adaptive algorithm for solving a class of bilevel split variational inequality problem in real Hilbert spaces,” TNU Journal of Science and Technology,
vol. 228, no. 10, pp. 491–499, 2023.
[10] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[11] S.V. Denisov, V.V. Semenov and L.M. Chabak, “Convergence of the modified extragradient
method for variational inequalities with non-Lipschitz operators,” Cybern. Syst. Anal., vol. 51,
pp. 757–765, 2015.
[12] R.W. Cottle and J.C. Yao, “Pseudo-monotone complementarity problems in Hilbert space,” J.
Optim. Theory Appl., vol. 75, pp. 281–295, 1992.
[13] A.N. Iusem and R. Garciga Otero, “Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces,” Numer. Funct. Anal. Optim., vol. 22, pp. 609–640,
2001.
DOI: https://doi.org/10.34238/tnu-jst.11781
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu