KHÁM PHÁ ĐA DẠNG LOÀI VÀ CHỨC NĂNG GENE TRONG MẬT ONG RỪNG TẠI SƠN LA, VIỆT NAM BẰNG METAGENOMICS
Thông tin bài báo
Ngày nhận bài: 10/01/25                Ngày hoàn thiện: 31/03/25                Ngày đăng: 31/03/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] P. M. Da Silva, C. Gauche, L. V. Gonzaga, A. C. O. Costa, and R. Fett, “Honey: Chemical composition, stability and authenticity,” Food Chemistry, vol. 196, pp. 309-323, 2016.
[2] H. Abuelgasim, C. Albury, and J. Lee, “Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis,” BMJ Evidence-Based Medicine, vol. 26, no. 2, pp. 57-64, 2021.
[3] Z. N. François, M. F. G. Perin, and K. P. Marie, “Antimicrobial activity of probiotic strain Lactobacillus plantarum isolated from ‘sha’a’ and assessment of its viability in local honey,” Journal of Microbiology, Biotechnology and Food Sciences, vol. 2021, no. 10, pp. 226-231, 2021.
[4] H. K. Wirta, M. Bahram, K. Miller, T. Roslin, and E. Vesterinen, “Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee,” PLOS One, vol. 17, no. 7, 2022, Art. no. e0268250.
[5] S. Bovo, V. J. Utzeri, A. Ribani, R. Cabbri, and L. Fontanesi, “Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity,” Sci. Rep., vol. 10, no. 1, 2020, Art. no. 1.
[6] S. Bovo, A. Ribani, V. J. Utzeri, G. Schiavo, F. Bertolini, and L. Fontanesi, “Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature,” PLOS One, vol. 13, no. 10, 2018, Art. no. e0205575.
[7] A. Galanis, P. Vardakas, M. Reczko, V. Harokopos, P. Hatzis, E. M. C. Skoulakis, G. A. Pavlopoulos, and S. Patalano, “Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey,” Molecular Ecology Resources, vol. 22, no. 7, pp. 2506-2523, 2022.
[8] T. L. Pham, T. T. D. Bui, T. T. Ha, T. H. Nguyen, M. S. Yoo, Y. S. Cho, and V. Q. Dong, “The gut microbiota at different developmental stages of Apis cerana reveals potential probiotic bacteria for improving honeybee health,” Microorganisms, vol. 10, no. 10, 2022, Art. no. 10.
[9] C. Billington, J. M. Kingsbury, and L. Rivas, “Metagenomics approaches for improving food safety: A review,” Journal of Food Protection, vol. 85, no. 3, pp. 448-464, 2021.
[10] M. H. Bui, T. T. Tran, H. N. Nguyen, and T. T. H. Le, “Species composition and nest distribution of natural honey bee (Hymenoptera: Apidae) in the mountainous area of Northwest, Vietnam,” TNU Journal of Science and Technology, vol. 229, no. 01, pp. 198-203, 2023.
[11] F. E. Buytaers, A. Saltykova, W. Mattheus, B. Verhaegen, N. H. C. Roosens, K. Vanneste, V. Laisnez, N. Hammami, B. Pochet, V. Cantaert, K. Marchal, S. Denayer, and S. C. J. De Keersmaecker, “Application of a strain-level shotgun metagenomics approach on food samples: resolution of the source of a Salmonella food-borne outbreak,” Microb. Genom., vol. 7, no. 4, 2021, Art. no. 000547.
[12] T. N. T. Nguyen, N. T. Nguyen, D. T. Tran, P.-C. Kuo, B. T. Nguyen, N. T. Le, H. T. Le, H. D. T. Nguyen, D. C. Vu, T. L. Ho, N. A. Le, and T. T. T. Nguyen, “Chemical composition analysis and antioxidant activity of Coffea robusta monofloral honeys from Vietnam,” Foods, vol. 11, no. 3, 2022, Art. no. 3.
[13] N. Q. Pham, H. B. Luu, T. T. Vu, and T. T. Q. Cung, “Comparison of antibacterial activities of some kinds of honey in Vietnam,” Vietnam Journal of Food Control, vol. 5, no. 1, pp. 77-88, 2022.
[14] S. Andrews, “FastQC: A quality control tool for high throughput sequence data,” 2022. [Online]. Available: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. [Accessed: August 24, 2023]
[15] A. M. Bolger, M. Lohse, and B. Usadel, “Trimmomatic: a flexible trimmer for Illumina sequence data,” Bioinformatics, vol. 30, no. 15, pp. 2114-2120, 2014.
[16] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nat Methods, vol. 9, no. 4, 2012, Art. no. 4.
[17] D. E. Wood, J. Lu, and B. Langmead, “Improved metagenomic analysis with Kraken 2,” Genome Biol, vol. 20, no. 1, Art. no. 257, 2019.
[18] D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam, “MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph,” Bioinformatics, vol. 31, no. 10, pp. 1674-1676, 2015.
[19] J. Lu, F. P. Breitwieser, P. Thielen, and S. L. Salzberg, “Bracken: estimating species abundance in metagenomics data,” PeerJ Computer Science, vol. 3, 2017, Art. no. e104.
[20] A. Mikheenko, V. Saveliev, and A. Gurevich, “MetaQUAST: evaluation of metagenome assemblies,” Bioinformatics, vol. 32, no. 7, pp. 1088-1090, 2016.
[21] D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer, and L. J. Hauser, “Prodigal: prokaryotic gene recognition and translation initiation site identification,” BMC Bioinformatics, vol. 11, no. 1, 2010, Art. no. 119.
[22] J. C. Sequeira, M. Rocha, M. M. Alves, and A. F. Salvador, “UPIMAPI, reCOGnizer and KEGGCharter: Bioinformatics tools for functional annotation and visualization of (meta)-omics datasets,” Computational and Structural Biotechnology Journal, vol. 20, pp. 1798-1810, 2022.
[23] S. Liu, D. Lang, G. Meng, J. Hu, M. Tang, and X. Zhou, “Tracing the origin of honey products based on metagenomics and machine learning,” Food Chemistry, vol. 371, 2022, Art. no. 131066.
[24] H. K. Wirta, N. Abrego, K. Miller, T. Roslin, and E. Vesterinen, “DNA traces the origin of honey by identifying plants, bacteria and fungi,” Sci. Rep., vol. 11, no. 1, 2021, Art. no. 1.
[25] S. Ullah, F. Huyop, R. A. Wahab, I. G. A. Sujana, N. S. Antara, and I. B. W. Gunam, “Using pollen DNA metabarcoding to trace the geographical and botanical origin of honey from Karangasem, Indonesia,” Heliyon, vol. 10, no. 12, 2024, Art. no. e33094.
[26] J. Crovadore, R. Chablais, F. Raffini, B. Cochard, M. Hänzi, F. Gérard, K. K. Jensen, and F. Lefort, “Draft genome sequences of 3 strains of Apilactobacillus kunkeei isolated from the bee gut microbial community,” Microbiology Resource Announcements, vol. 10, no. 13, 2021, Art. no. e00088-21.
[27] A. Endo, S. Maeno, Y. Tanizawa, W. Kneifel, M. Arita, L. Dicks, and S. Salminen, “Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes,” Appl. Environ. Microbiol., vol. 84, no. 19, 2018, Art. no. e01290-18.
[28] T. C. Olofsson and A. Vásquez, “Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera,” Curr. Microbiol., vol. 57, no. 4, pp. 356-363, 2008.
[29] S. Bovo, A. Ribani, V. J. Utzeri, G. Schiavo, F. Bertolini, and L. Fontanesi, “Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature,” PLOS One, vol. 13, no. 10, 2018, Art. no. e0205575.
[30] C. Hou, B. Li, Y. Luo, S. Deng, and Q. Diao, “First detection of Apis mellifera filamentous virus in Apis cerana cerana in China,” Journal of Invertebrate Pathology, vol. 138, pp. 112-115, 2016.
[31] U. Hartmann, E. Forsgren, J.-D. Charrière, P. Neumann, and L. Gauthier, “Dynamics of Apis mellifera filamentous virus (AmFV) infections in honey bees and relationships with other parasites,” Viruses, vol. 7, no. 5, 2015, Art. no. 5.
[32] P. Engel and N. A. Moran, “Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis,” Gut. Microbes, vol. 4, no. 1, pp. 60-65, 2013.DOI: https://doi.org/10.34238/tnu-jst.11854
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





