NGHIÊN CỨU ỨNG DỤNG CÁC MÔ HÌNH HỌC MÁY NHẰM PHÂN LOẠI VÀ ĐỊNH VỊ SỰ CỐ TRÊN ĐƯỜNG DÂY TRUYỀN TẢI
Thông tin bài báo
Ngày nhận bài: 10/01/25                Ngày hoàn thiện: 27/02/25                Ngày đăng: 27/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] N. D. Tleis, “1 - Introduction to power system faults,” in Power Systems Modelling and Fault Analysis, in Newnes Power Engineering Series. Oxford: Newnes, 2008, pp. 1-27, doi: 10.1016/B978-075068074-5.50005-9.
[2] M. S. Uddin et al., “On the protection of power system: Transmission line fault analysis based on an optimal machine learning approach,” Energy Rep., vol. 8, pp. 10168–10182, Nov. 2022, doi: 10.1016/j.egyr.2022.07.163.
[3] M. Bhatnagar and A. Yadav, “Fault Detection and Classification in Transmission Line Using Fuzzy Inference System,” in 2020 5th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Dec. 2020, pp. 1-6, doi: 10.1109/ICRAIE51050.2020.9358386.
[4] L. Hulka, U. Klapper, M. Putter, and W. Wurzer, “Measurement of line impedance and mutual coupling of parallel lines to improve the protection system,” in CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1, Jun. 2009, pp. 1-4, doi: 10.1049/cp.2009.0800.
[5] T.-C. Lin, B. Simachew, and M.-Y. Cho, “A Novel Single-Ended Fault Location Algorithm for Digital Distance Relays Based on A New FPGA Design,” in 2023 IEEE Power & Energy Society General Meeting (PESGM), Jul. 2023, pp. 1–5, doi: 10.1109/PESGM52003.2023.10253255.
[6] W. Chen, D. Wang, D. Cheng, F. Qiao, X. Liu, and M. Hou, “Novel travelling wave fault location principle based on frequency modification algorithm,” Int. J. Electr. Power Energy Syst., vol. 141, Oct. 2022, Art. no. 108155, doi: 10.1016/j.ijepes.2022.108155.
[7] I. A. França, C. W. Vieira, D. C. Ramos, L. H. Sathler, and E. G. Carrano, “A machine learning-based approach for comprehensive fault diagnosis in transmission lines,” Comput. Electr. Eng., vol. 101, Jul. 2022, Art. no. 108107, doi: 10.1016/j.compeleceng.2022.108107.
[8] S. Banerjee, P. S. Bhowmik, and A. K. Bohre, “Detection and Location of Fault in Microgrid using Discrete Wavelet Transform based Technique,” in 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Dec. 2022, pp. 417-421, doi: 10.1109/CATCON56237.2022.10077697.
[9] S. Vieira, W. H. Lopez Pinaya, and A. Mechelli, “Chapter 1 - Introduction to machine learning,” in Machine Learning, A. Mechelli and S. Vieira, Eds., Academic Press, 2020, pp. 1-20, doi: 10.1016/B978-0-12-815739-8.00001-8.
[10] A. Géron, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Incorporated, 2019.
[11] W. H. L. Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli, “Chapter 10 - Convolutional neural networks,” in Machine Learning, A. Mechelli and S. Vieira, Eds., Academic Press, 2020, pp. 173-191, doi: 10.1016/B978-0-12-815739-8.00010-9.
[12] C. H. Pham, Q. M. Nguyen, D. T. Nguyen, and T. Q. A. Tao, “Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model,” IEEE Access, vol. 10, pp. 106296-106304, 2022, doi: 10.1109/ACCESS.2022.3211941.
[13] K. Cho et al., “Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), A. Moschitti, B. Pang, and W. Daelemans, Eds., Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724-1734, doi: 10.3115/v1/D14-1179.
[14] M. Abumohsen, A. Y. Owda, M. Owda, and A. Abumihsan, “Hybrid machine learning model combining of CNN-LSTM-RF for time series forecasting of Solar Power Generation,” E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 9, Sep. 2024, Art. no. 100636, doi: 10.1016/j.prime.2024.100636.
[15] M.-C. Chiu, H.-W. Hsu, K.-S. Chen, and C.-Y. Wen, “A hybrid CNN-GRU based probabilistic model for load forecasting from individual household to commercial building,” Energy Rep., vol. 9, pp. 94-105, Oct. 2023, doi: 10.1016/j.egyr.2023.05.090.
DOI: https://doi.org/10.34238/tnu-jst.11857
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu