NGHIÊN CỨU VÀ ỨNG DỤNG MÔ HÌNH STACKING ENSEMBLE TRONG DỰ BÁO PHỤ TẢI NGẮN HẠN
Thông tin bài báo
Ngày nhận bài: 14/01/25                Ngày hoàn thiện: 06/03/25                Ngày đăng: 07/03/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. V. Ves, N. Ghitescu, C. Pop, M. Antal, T. Cioara, I. Anghel, and I. Salomie, “A Stacking Multi-Learning Ensemble Model for Predicting Near Real Time Energy Consumption Demand of Residential Buildings,” Proc. - 2019 IEEE 15th Int. Conf. Intell. Comput. Commun. Process, 2019, pp. 183-189, doi: 10.1109/ICCP48234.2019.8959572.
[2] H. M. Al-Hamadi, “Long-term electric power load forecasting using fuzzy linear regression technique,” PEAM 2011 - Proc. 2011 IEEE Power Eng. Autom. Conf., vol. 3, pp. 96-99, 2011, doi: 10.1109/PEAM.2011.6135023.
[3] S. Chen, R. Lin, and W. Zeng, “Short-Term Load Forecasting Method Based on ARIMA and LSTM,” Int. Conf. Commun. Technol. Proceedings, ICCT, 2022, pp. 1913-1917, doi: 10.1109/ICCT56141.2022.10073051.
[4] M. M. Eljazzar and E. E. Hemayed, “Enhancing electric load forecasting of ARIMA and ANN using adaptive Fourier series,” the 7th of 2017. Comput. Commune. Work. Conf. CCVC 2017, January 2017, doi: 10.1109/CCWC.2017.7868457.
[5] H. Yiling and H. Shaofeng, “A Short-Term Load Forecasting Model Based on Improved Random Forest Algorithm,” Proc. - 2020 7th Int. Forum Electr. Eng. Autom. IFEEA, 2020, no. 1, pp. 928-931, doi: 10.1109/IFEEA51475.2020.00195.
[6] C. Wang, J. Zhang, L. Tian, L. Xue, Y. Zheng, and L. Liu, “Short-term Load Forecasting Based on Kprototypes Clustering and Random Forest,” 5th IEEE Conf. Energy Internet Energy Syst. Integr. Energy Internet Carbon Neutrality, 2021, pp. 1226-1230, doi: 10.1109/EI252483.2021.9712977.
[7] P. F. Pai and W. C. Hong, “Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms,” Electr. Power Syst. Res., vol. 74, no. 3, pp. 417-425, 2005, doi: 10.1016/j.epsr.2005.01.006.
[8] L. A. Abad, S. M. Sarabia, J. M. Yuzon, and M. C. Pacis, “A Short-Term Load Forecasting Algorithm Using Support Vector Regression & Artificial Neural Network Method (SVR-ANN),” 2020 11th IEEE Control Syst. Grad. Res. Colloquium, 2020, pp. 138-143, doi: 10.1109/ICSGRC49013.2020.9232630.
[9] H. Ma, P. Yang, F. Wang, X. Wang, D. Yang, and B. Feng, “Short-Term Heavy Overload Forecasting of Public Transformers Based on Combined LSTM-XGBoost Model,” Energies, vol. 16, no. 3, 2023, doi:10.3390/EN16031507.
[10] M. Mohamed, F. E. Mahmood, M. A. Abd, M. Rezkallah, and A. Hamadi, “Load Demand Forecasting Using eXtreme Gradient Boosting ( XGBoost ),” 2023 Ei Ind. APPL. Soc. Then. Meet., 2023, pp. 1-7, doi: 10.1109/IAS54024.2023.10406613.
[11] H. Auto-tuning, S. Lei, and F. Wang, “A Short-term Net Load Forecasting Method Based on Two-stage Feature Selection and LightGBM with,” 2023 IEEE/IAS 59th Ind. Commer. Power Syst. Tech. Conf., 2023, pp. 1-6, doi: 10.1109/ICPS57144.2023.10142095.
[12] Z. Fang, J. Zhan, J. Cao, L. Gan, and H. Wang, “Research on Short-Term and Medium-Term Power Load Forecasting Based on STL-LightGBM,” 2nd Int. Conf. Electr. Eng. Control Sci., 2022, pp. 1047-1051, doi: 10.1109/IC2ECS57645.2022.10088145.
[13] U. Samal and A. Kumar, “Enhancing Software Reliability Forecasting Through a Hybrid ARIMA-ANN Model,” Arab. J. Sci. Eng., vol. 48, 2023, doi: 10.1007/s13369-023-08486-1.
[14] B. Satish, K. S. Swarup, S. Srinivas, and A. H. Rao, “Effect of temperature on short-term load forecasting using an integrated ANN,” Electr. Power Syst. Res., vol. 72, no. 1, pp. 95-101, 2004, doi: 10.1016/j.epsr.2004.03.006.
[15] M. Alhussein, K. Aurangzeb, and S. I. Haider, “Hybrid CNN-LSTM model for short-term individual household load forecasting,” IEEE Access, vol. 8, pp. 180544-180557, 2020.
[16] W. Xiong, “Bus load forecasting based on maximum information coefficient and CNN-LSTM model,” IEEE Int. Conf. Image Process. Comput. Appl., 2023, pp. 659-663, doi: 10.1109/ICIPCA59209.2023.10257944.
[17] A. Ajitha, M. Goel, M. Assudani, S. Radhika, and S. Goel, “Design and development of Residential Sector Load Prediction model during COVID-19 Pandemic using LSTM based RNN,” Electr. Power Syst. Res., vol. 212, 2022, Art. no. 108635, doi: 10.1016/j.epsr.2022.108635.
[18] W. Xiangxue, X. Lunhui, and C. Kaixun, “Data-Driven Short-Term Forecasting for Urban Road Network Traffic Based on Data Processing and LSTM-RNN,” Arab. J. Sci. Eng., vol. 44, pp. 3043-3060, 2018, doi: 10.1007/s13369-018-3390-0.
[19] X. Chen, M. Yang, Y. Zhang, J. Liu, and S. Yin, “Load Prediction Model of Integrated Energy System Based on CNN-LSTM,” 3rd Int. Conf. Energy Eng. Power Syst., 2023, pp. 248-251, doi: 10.1109/EEPS58791.2023.10257124.
[20] X. Guo, Q. Zhao, D. Zheng, Y. Ning, and Y. Gao, “A short-term load forecasting model of multi-scale CNN-LSTM hybrid neural network considering the real-time electricity price,” Energy Reports, vol. 6, pp. 1046-1053, 2020, doi: 10.1016/j.egyr.2020.11.078.
[21] Z. He, S. Chen, N. Pan, T. Ba, C. Lin, X. Yang, and G. Li, “Short-Term Power Load Forecasting of Multi-Charging Piles Based on Improved Gate Recurrent Unit,” IEEE Access, vol. 10, pp. 2490-2499, 2024.
[22] C. Time-series, I. E. Livieris, E. Pintelas, S. Stavroyiannis, and P. Pintelas, “Ensemble Deep Learning Models for Forecasting,” Algorithms, vol. 13, pp. 1-21, 2020, doi:10.3390/a13050121.
[23] S. Singh and M. M. Tripathi, “A Comparative Analysis of Extreme Gradient Boosting Technique with Long Short-Term Memory and Layered Recurrent Neural Network for Electricity Demand Forecast,” 6th Int. Conf. Recent Trends Electron. Information, Commun. Technol., 2021, pp. 297-302, doi: 10.1109/RTEICT52294.2021.9573988.
[24] M. Goyal and M. Pandey, “A Systematic Analysis for Energy Performance Predictions in Residential Buildings Using Ensemble Learning,” Arab. J. Sci. Eng., vol. 46, 2020, doi: 10.1007/s13369-020-05069-2.
[25] L. Zhang and D. Jánošík, “Enhanced short-term load forecasting with hybrid machine learning models: CatBoost and XGBoost approaches,” Expert Syst. Appl., vol. 241, 2024, doi: 10.1016/j.Eshwa.2023.122686.
[26] M. Ulagammai, “Short Term Load Forecasting Using ANN and WNN,” Proc. Int. Conf. Intell. Innov. Technol. Comput. Electr. Electron. ICIITCEE, 2023, pp. 612-616, doi: 10.1109/IITCEE57236. 2023.10091081.
[27] M. Abumohsen, A. Y. Owda, and M. Owda, “Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms,” Energies, vol. 16, no. 5, pp. 1-31, 2023, doi: 10.3390/en16052283.
[28] J. Zhang, Z. Zhu, and Y. Yang, “Electricity Load Forecasting Based on CNN-LSTM,” IEEE Int. Conf. Electr. Autom. Comput. Eng., 2023, pp. 1385-1390, doi: 10.1109/ICEACE60673. 2023.10442217.
[29] M. Dostmohammadi, M. Z. Pedram, S. Hoseinzadeh, and D. A. Garcia, “A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods,” J. Environ. Manage., vol. 364, 2024, Art. no. 121264, doi: 10.1016/j.genvman.2024.121264.
[30] A. Ghasemieh, A. Lloyd, P. Bahrami, P. Vajar, and R. Kashef, “A novel machine learning model with Stacking Ensemble Learner for predicting emergency readmission of heart-disease patients,” Decis. Anal. J., vol. 7, 2023, Art. no. 100242, doi: 10.1016/j.dajour.2023.100242.
DOI: https://doi.org/10.34238/tnu-jst.11886
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu