NGHIÊN CỨU TÍNH CHẤT HẤP THỤ SÓNG VI BA CỦA VẬT LIỆU TỔ HỢP NỀN BiFeO3
Thông tin bài báo
Ngày nhận bài: 23/01/25                Ngày hoàn thiện: 27/02/25                Ngày đăng: 27/02/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] C. Wang, X. Wang, et al., "The Electromagnetic Property of Chemically Reduced Graphene Oxide and Its Application as Microwave Absorbing Material," Appl. Phys. Lett., vol. 98, 2011, Art. no. 072906.
[2] H. J. Yang, M. S. Cao, et al., "NiO Hierarchical Nanorings on SiC: Enhancing Relaxation to Tune Microwave Absorption at Elevated Temperature," ACS Appl. Mater. Interfaces, vol. 7, pp. 7073-7077, 2015.
[3] G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., vol. 21, pp. 2463-2485, 2009.
[4] A. Kumar and D. Varshney, "Crystal Structure Refinement of Bi 1-XNd XFeO3 Multiferroic by the Rietveld Method," Ceram. Int., vol. 38, pp. 3935-3942, 2012.
[5] R. Che, and X. Liang, et al., "Microwave Absorption Enhancement and Complex Permittivity and Permeability of Fe Encapsulated within Carbon Nanotubes," Adv. Mater., vol. 16, pp. 401-405, 2004.
[6] Z. X. Cheng, and T. R. Shrout, et al., "Structure, Ferroelectric Properties, and Magnetic Properties of the La-Doped Bismuth Ferrite," J. Appl. Phys., vol. 103, no. 7, 2008, Art. no. 07E507.
[7] V. A. Khomchenko, and J. A. Paixão, et al., "Rhombohedral-to-Orthorhombic Transition and Multiferroic Properties of Dy-Substituted BiFeO3," J. Appl. Phys., vol. 108, no. 7, 2010, Art. no. 074109.
[8] A. Khesro, I. M. Reaney, et al., "Phase Transitions, Domain Structure, and Pseudosymmetry in La- and Ti-Doped BiFeO3," J. Appl. Phys., vol. 119, 2016, Art. no. 054101.
[9] S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, and Y. Ma, "Observation of Room Temperature Saturated Ferroelectric Polarization in Dy Substituted BiFeO3 Ceramics," J. Appl. Phys., vol. 111, 2012, Art. no. 074105.
[10] I. O. Troyanchuk, V. N. Shut, et al., "Phase Transitions, Magnetic and Piezoelectric Properties of Rare-Earth-Substituted BiFeO3 Ceramics," J. Am. Ceram. Soc., vol. 94, pp. 4502-4506, 2011.
[11] C. S. Chen, C. W. Yu, et al., "Micro-to-Nano Domain Structure and Orbital Hybridization in Rare-Earth-Doped BiFeO3 across Morphotropic Phase Boundary," J. Am. Ceram. Soc., vol. 101, pp. 883-896, 2018.
[12] N. A. Spaldin and R. Ramesh, "Advances in Magnetoelectric Multiferroics," Nat. Mater., vol. 18, pp. 203-212, 2019.
[13] Y. Q. Kang, M. S. Cao, J. Yuan, and X. L. Shi, "Microwave Absorption Properties of Multiferroic BiFeO3 Nanoparticles," Mater. Lett., vol. 63, pp. 1344-1346, 2009.
[14] S. Bi, J. Li, B. Mei, X. J. Su, C. Z. Ying, and P. H. Li, "Effect of Zn Doping on the Microwave Absorption of BFO Multiferroic Materials," IOP Conf. Ser. Mater. Sci. Eng., vol. 292, 2018, Art. no. 012105.
[15] P. Harshapriya, P. Kaur, and D. Basandrai, "Influence of La-Ag Substitution on Structural, Magnetic, Optical, and Microwave Absorption Properties of BiFeO3 Multiferroics," Chinese J. Phys., vol. 84, pp. 119-131, 2023.
[16] A. N. Vicente, G. M. I. Dip, and C. Junqueira, "The Step by Step Development of NRW Method," SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. Proc., vol. 738, pp. 22-24, 2011.
[17] P. Wilson, Grounding and Wiring, 1-47, The Circuit Designer's Companion (Fourth Edition), 2017.
[18] D. K. Pradhan, R. S. Katiyar, et al., "Phase Transition and Enhanced Magneto-Dielectric Response in BiFeO3-DyMnO3 Multiferroics," J. Appl. Phys., vol. 117, 2015, Art. no. 144103.
[19] T. P. Pham et al., "Structural Transition, Electrical and Magnetic Properties of Cr Doped Bi0.9Sm0.1FeO3 Multiferroics," J. Alloys Compd., vol. 813, 2020, Art. no. 152245.
[20] T. T. Pham, B. W. Lee, et al., "Intrinsic Exchange Bias and Vertical Hysteresis Shift in Bi0.84La0.16Fe0.96Ti0.04O3," J. Magn. Magn. Mater., vol. 462, pp. 172-177, 2018.
[21] D. P. Dutta and A. K. Tyagi, "Effect of Sm3+ and Zr4+ Codoping on the Magnetic, Ferroelectric and Magnetodielectric Properties of Sonochemically Synthesized BiFeO3 Nanorods," Appl. Surf. Sci., vol. 450, pp. 429-440, 2018.
[22] Y. Hong, J. Li, H. Bai, Z. Song, G. Li, M. Wang, and Z. Zhou, "Role of Finite-Size Effect in BiFeO3 Nanoparticles to Enhance Ferromagnetism and Microwave Absorption," Appl. Phys. Lett., vol. 116, 2020, Art. no. 013103.
[23] C. Tian, J. Zhao, et al., "The Influence of Nd Substitution on Microstructural, Magnetic, and Microwave Absorption Properties of BiFeO3 Nanopowders," J. Alloys Compd., vol. 859, 2021, Art. no. 157757.
[24] C. Tian, J. Wang, et al., “Effects of Sm-doping on microstructure, magnetic and microwave absorption properties of BiFeO3,” J. Rare Earths, vol. 39, no. 7, pp. 835-843, 2021.
[25] T. T. Pham et al., “Microwave absorption performance of La1.5Sr0.5NiO4/SrFe12O19 composites with thin matching thickness,” Ceramics International, vol. 50, pp. 46683-46694, 2024.
[26] T. N. Bach et al., “Microwave absorption properties of (100-x)La1.5Sr0.5NiO4/xNiFe2O4 nanocomposites,” Journal of Alloys and Compounds, vol. 695, pp. 1658-1662, 2017.
DOI: https://doi.org/10.34238/tnu-jst.11947
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu