ĐIỀU CHỈNH BỀ MẶT HÓA HỌC CỦA HẠT NANO CARBON BẰNG CÁCH THAY ĐỔI TỶ LỆ TIỀN CHẤT ACID/AMINE
Thông tin bài báo
Ngày nhận bài: 20/02/25                Ngày hoàn thiện: 05/05/25                Ngày đăng: 05/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, “The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective,” Nano Res., vol. 8, no. 2, pp. 355–381, Feb. 2015, doi: 10.1007/s12274-014-0644-3.
[2] T. D. Nguyen et al., “Decorating conjugated fluorophore to PEI for photoluminescence sensing and interfacial electrolyte applications,” Mater. Lett., vol. 377, Aug. 2024, Art. no. 137444, doi: 10.1016/j.matlet.2024.137444.
[3] T. T.-H. Do et al., “Control the solubility of carbon quantum dots by solvent engineering,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 3, pp. 51–58, Dec. 2023, doi: 10.56764/hpu2.jos.2023.2.3.51-58.
[4] X.-D. Mai et al., “One-pot synthesis of homogeneous carbon quantum dots/aluminum hydroxide composite and its application in Cu(II) detection,” Carbon Lett., vol. 34, pp. 603–609, Jan. 2024, doi: 10.1007/s42823-023-00676-z.
[5] T. Q. Nguyen et al., “Universal method for preparation of metal-doped Carbon quantum dots,” TNU J. Sci. Technol., vol. 200, no. 07, pp. 3–9, 2019.
[6] D.-K. Nguyen, T.-S. Le, Q.-T. Le, and X.-D. Mai, “The roles of intermediate fluorophores on the optical properties of bottom-up synthesized carbon nanodots,” HPU2 J. Sci. Nat. Sci. Technol., vol. 2, no. 2, pp. 68–82, 2023, doi: 10.56764/hpu2.jos.2023.2.2.68-82.
[7] X.-D. Mai, T. T. K. Chi, T.-C. Nguyen, and V.-T. Ta, “Scalable synthesis of highly photoluminescence carbon quantum dots,” Mater. Lett., vol. 268, Jun. 2020, Art. no. 127595, doi: 10.1016/j. matlet.2020.127595.
[8] S. Zhu et al., “Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state,” Nano Today, vol. 13, pp. 10–14, 2017, doi: 10.1016/j.nantod.2016.12.006.
[9] H. Li et al., “Water-soluble fluorescent carbon quantum dots and photocatalyst design,” Angew. Chemie - Int. Ed., vol. 49, no. 26, pp. 4430–4434, 2010, doi: 10.1002/anie.200906154.
[10] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, and S. Jeon, “Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups,” ACS Nano, vol. 7, no. 2, pp. 1239–1245, 2013, doi: 10.1021/nn304675g.
[11] Q.-B. Hoang, V.-T. Mai, D.-K. Nguyen, D. Q. Truong, and X.-D. Mai, “Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite,” Mater. Today Chem., vol. 12, pp. 166–172, Jun. 2019, doi: 10.1016/j.mtchem.2019.01.003.
[12] X. Xu et al., “Surface functional carbon dots: Chemical engineering applications beyond optical properties,” J. Mater. Chem. C, vol. 8, no. 46, pp. 16282–16294, 2020, doi: 10.1039/d0tc03805a.
[13] X.-D. Mai et al., “Homogeneous and highly photoluminescent composites based on in-situ formed fluorophores in PVA blends,” Mater. Lett., vol. 319, Jul. 2022, Art. no. 132269, doi: 10.1016/j.matlet.2022.132269.
[14] X.-D. Mai et al., “The synthesis of polymeric nano carbon from foods and the application in Pb(II) detection,” TNU J. Sci. Technol., vol. 189, no. 13, pp. 45–51, 2018.
[15] H. Shabbir, E. Csapó, and M. Wojnicki, “Carbon quantum dots: The role of surface functional groups and proposed mechanisms for metal ion sensing,” Inorganics, vol. 11, no. 6, 2023, doi: 10.3390/inorganics11060262.
[16] T.-H. T. Dang, V.-T. Mai, Q.-T. Le, N.-H. Duong, and X.-D. Mai, “Post-decorated surface fluorophores enhance the photoluminescence of carbon quantum dots,” Chem. Phys., vol. 527, Nov. 2019, Art. no. 110503, doi: 10.1016/j.chemphys.2019.110503.
[17] Q. Fang et al., “Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules,” Carbon, vol. 118, pp. 319–326, 2017, doi: 10.1016/j.carbon.2017.03.061.
[18] Y. Song et al., “Investigation from chemical structure to photoluminescent mechanism: A type of carbon dots from the pyrolysis of citric acid and an amine,” J. Mater. Chem. C, vol. 3, no. 23, pp. 5976–5984, 2015, doi: 10.1039/c5tc00813a.
[19] X.-D. Mai et al., “The thermal preparation of luminescent pmma composite using citric acid and ethylenediamine,” TNU J. Sci. Technol., vol. 227, no. 16, pp. 62–67, Oct. 2022, doi: 10.34238/tnu-jst.6470.
[20] A. M. Vervald, K. A. Laptinskiy, M. Y. Khmeleva, and T. A. Dolenko, “Toward carbon dots from citric acid and ethylenediamine, part 1: Structure, optical properties, main luminophore at different stages of synthesis,” Carbon Trends, vol. 19, 2025, Art. no. 100452, doi: 10.1016/j.cartre.2025.100452.
[21] M. Pykal et al., “Thermodynamics and kinetics of early stages of carbon dot formation: A case of citric acid and ethylenediamine reaction,” Nanoscale, vol. 17, pp. 7780-7789, 2025, doi: 10.1039/d4nr04420g.
[22] M. Otyepka, M. Langer, M. Paloncýová, and M. Medved’, “Molecular fluorophores self-organize into c-dot seeds and incorporate into c-dot structures,” J. Phys. Chem. Lett., vol. 11, no. 19, pp. 8252–8258, 2020, doi: 10.1021/acs.jpclett.0c01873.
[23] P. Duan, B. Zhi, L. Coburn, C. L. Haynes, and K. Schmidt-Rohr, “A molecular fluorophore in citric acid/ethylenediamine carbon dots identified and quantified by multinuclear solid-state nuclear magnetic resonance,” Magn. Reson. Chem., vol. 58, no. 11, pp. 1130–1138, 2020, doi: 10.1002/mrc.4985.
[24] M. Shamsipur, A. Barati, A. A. Taherpour, and M. Jamshidi, “Resolving the multiple emission centers in carbon dots: From fluorophore molecular states to aromatic domain states and carbon-core states,” J. Phys. Chem. Lett., vol. 9, no. 15, pp. 4189–4198, 2018, doi: 10.1021/acs.jpclett.8b02043.
[25] M. Fu et al., “Carbon dots: A unique fluorescent cocktail of polycyclic aromatic hydrocarbons,” Nano Lett., vol. 15, no. 9, pp. 6030–6035, 2015, doi: 10.1021/acs.nanolett.5b02215.
[26] X. Mai, Y. T. H. Phan, and V. Nguyen, “Excitation-independent emission of carbon quantum dot solids,” Adv. Mater. Sci. Eng., vol. 2020, pp. 1–5, Dec. 2020, doi: 10.1155/2020/9643168.
[27] V. T. Mai, T. P. Le, A. D. Vu, X. B. Nguyen, and X. D. Mai, “Enhanced energy transfer in carbon quantum dot solids,” TNU J. Sci. Technol., vol. 225, no. 06, pp. 419–423, 2020.
DOI: https://doi.org/10.34238/tnu-jst.12097
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu