ĐẶC TÍNH CỦA HỢP KIM Ti64 IN 3D BẰNG CÔNG NGHỆ NUNG CHẢY LAZE CHỌN LỌC
Thông tin bài báo
Ngày nhận bài: 01/03/25                Ngày hoàn thiện: 09/05/25                Ngày đăng: 09/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. Motyka, K. Kubiak, J. Sieniawski, and W. Ziaja, “Phase transformations and characterization of α + β Titanium Alloys,” Comprehensive Materials Processing, vol. 2, pp. 7–36, 2014.
[2] W. Rae, “Thermo-metallo-mechanical modelling of heat treatment induced residual stress in Ti–6Al–4V alloy,” Materials Science and Technology, vol. 35, no. 7, pp.747–766, 2019.
[3] R. Pederson, “Microstructure and phase transformation of Ti-6Al-4V,” PhD. Thesis, Luleå University of Technology, Luleå, 2002.
[4] R. Ben, F. Schöffer, G. Brian, B. Redwood, F. Schöffer, and B. Garret, The 3D printing handbook_ technologies, design and applications, 3D Hubs, 2017.
[5] X. Yang, R. A. Barrett, M. Tong, N. M. Harrison, and S. B. Leen, “Towards a process-structure model for Ti-6Al-4V during additive manufacturing,” J. Manuf. Process., vol. 61, pp. 428–439, 2021.
[6] S. Liu and Y.C. Shin, “Additive manufacturing of Ti6Al4V alloy: A review,” Materials and Design, vol. 164, 2019, Art. no. 107552.
[7] B. Dutta and F. H. Froes, Additive manufacturing of titanium alloys: state of the art, challenges and opportunities, Elsevier Science, 2016.
[8] H. D. Nguyen, A. Pramanik, A. K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I. S. Jawahir, S. Dixit, and D. Buddhi, "A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties," J. Mater. Res. Technol., vol. 18, pp. 4641–4661, 2022.
[9] S. A. Shalnova, G. A. Panova, and N. Buczak, “Structure and phase composition of Ti-6Al-4V samples produced by direct laser deposition,” Key Eng. Mater., vol. 822, pp. 467–472, 2019.
[10] H. L. Wei, Y. Cao, W.H. Liao, and T. T. Liu, “Mechanisms on inter-track void formation and phase transformation during laser powder bed fusion of Ti-6Al-4V,” Additive Manufacturing, vol. 34, 2020, Art. no. 101221.
[11] M. T. Nguyen and V. T. Trinh, “Heat treatment for microstructure stabilizing of biomedical Ti-6Al-4V alloy fabricated by selective laser melting,” MM Science Journal, pp. 7453-7457, 2024, doi: 10.17973/MMSJ.2024_10_2024060.
[12] M. Koike, P. Greer, K. Owen, G. Lilly, L. E. Murr, S. M. Gaytan, et al., "Evaluation of titanium alloys fabricated using rapid prototyping technologies—electron beam melting and laser beam melting," Materials, vol. 4, pp. 1776-1792, 2011.
[13] S. Al-Bermani, M. Blackmore, W. Zhang, and I. Todd, "The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti6Al4V," Metall. Mater. Trans. A, vol. 41, pp. 3422–3434, 2010.
[14] G. Kasperovich and J. Hausmann, "Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting," J. Mater. Process. Technol., vol. 220, pp. 202–214, 2015.
[15] F. Bartolomeu, M. Gasik, F. S. Silva, and G. Miranda, "Mechanical properties of Ti6Al4V fabricated by laser powder bed fusion: A review focused on the processing and microstructural parameters influence on the final properties," Metals, Vol. 12, 2022, doi: 10.3390/met12060986.
[16] A. T. Ahmed and H. J. Rack, "Phase transformations during cooling in α+β titanium alloys," Mater. Sci. Eng. A, vol. 243, no. 1, pp. 206–211, 1998.
[17] G. Kasperovich and J. Hausmann, "Improvement of fatigue resistance and ductility of Ti-6Al-4V processed by selective laser melting," J. Mater. Process. Technol., vol. 220, pp. 202–214, 2015.
DOI: https://doi.org/10.34238/tnu-jst.12165
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu