PHÂN TÍCH ỨNG XỬ ĐỘNG LỰC HỌC ROBOT DẠNG VIÊN NANG KHI THAY ĐỔI KHOẢNG CÁCH VA ĐẬP CỦA BỘ TẠO RUNG
Thông tin bài báo
Ngày nhận bài: 07/03/25                Ngày hoàn thiện: 12/04/25                Ngày đăng: 12/04/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] M. D. Vasilakakis et al., "The future of capsule endoscopy in clinical practice: from diagnostic to therapeutic experimental prototype capsules," Prz Gastroenterol, vol. 15, no. 3, pp. 179-193, 2020.
[2] I. Hossain, R. Alam, and K. A. A. Mamun, "A Review of Locomotion Mechanism for Wireless Capsule Endoscopy," International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, vol. 7, no.7, pp. 46 - 53, 2019.
[3] L. Liu, S. Towfighian, and A. Hila, "A Review of Locomotion Systems for Capsule Endoscopy," IEEE Rev Biomed Eng, vol. 8, pp. 138-151, 2015.
[4] W. Chen, J. Sui, and C. Wang, "Magnetically Actuated Capsule Robots: A Review," IEEE Access, vol. 10, pp. 88398-88420, 2022.
[5] C. R. Simons-Linares and J. J. Vargo, "Use of Magnets in Flexible Endoscopy," in Magnetic Surgery, M. Gagner, Editor. Springer International Publishing, 2021, pp. 95-107.
[6] Y. Xu et al., "Autonomous Magnetic Navigation Framework for Active Wireless Capsule Endoscopy Inspired by Conventional Colonoscopy Procedures," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1729-1736, 2022.
[7] K. Incetan et al., "VR-Caps: A Virtual Environment for Capsule Endoscopy," Med Image Anal, vol. 70, 2021, Art. no. 101990.
[8] Z. Yang et al., "Magnetically Actuated Continuum Medical Robots: A Review," Advanced Intelligent Systems, vol. 5, no. 6, 2023, doi: 10.1002/aisy.202200416 .
[9] H. Wang et al., "Magnetic soft robots: Design, actuation, and function," Journal of Alloys and Compounds, vol. 922, 2022, Art. no. 166219.
[10] E. Pavlovskaia, M. Wiercigroch, and C. Grebogi, "Modeling of an impact system with a drift," Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., vol. 64, no. 5, Pt. 2, 2001, Art. no. 056224.
[11] K. T. Nguyen et al., "Stability of vibro-impact driven locomotion system with random initial conditions," TNU Journal of Science and Technology, vol. 226, no. 11, pp. 10-19, 2021.
[12] V.-D. Nguyen et al., "A New Design of Horizontal Electro-Vibro-Impact Devices," Journal of Computational and Nonlinear Dynamics, vol. 12, no. 6, 2017, Art. no. 061002.
[13] K. A. Sapronov, A.A. Cherepanov, and S. F. Yatsun, "Investigation of motion of a mobile two-mass vibration-driven system," Journal of Computer and Systems Sciences International, vol. 49, no. 1, pp. 144-151, 2010.
[14] A. N. Grankin, and S. F. Yatsun, "Investigation of vibroimpact regimes of motion of a mobile microrobot with electromagnetic drive," Journal of Computer and Systems Sciences International, vol. 48, no. 1, pp. 155-163, 2009.
[15] R. Carta et al., "A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation," Sensors and Actuators A: Physical, vol. 172, no. 1, pp. 253-258, 2011.
[16] P. Liu et al., "A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis," Engineering With Computers, vol. 36, pp. 655–669, 2019.
[17] V.-D. Nguyen and N.-T. La, "An improvement of vibration-driven locomotion module for capsule robots," Mechanics Based Design of Structures and Machines, vol.50, pp. 1658-1672, 2020.
[18] Y. Liu, E. Pavlovskaia, and M. Wiercigroch, "Experimental verification of the vibro-impact capsule model," Nonlinear Dynamics, vol. 83, no. 1-2, pp. 1029-1041, 2015.
[19] G. Stefani, M. D. Angelis, and U. Andreaus, "Influence of the gap size on the response of a single-degree-of-freedom vibro-impact system with two-sided constraints: Experimental tests and numerical modeling," International Journal of Mechanical Sciences, vol. 206, 2021, Art. no. 106617.
[20] Y. Liu et al., "Bifurcation analysis of a vibro-impact experimental rig with two-sided constraint," Meccanica, vol. 55, pp. 2505–2521, 2020.
DOI: https://doi.org/10.34238/tnu-jst.12234
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu