PHÁT HIỆN VÀ PHÂN LOẠI SỰ CỐ ĐƯỜNG DÂY TRUYỀN TẢI DỰA TRÊN MÔ HÌNH LAI DWT-GAF-CNN TỔ HỢP
Thông tin bài báo
Ngày nhận bài: 07/03/25                Ngày hoàn thiện: 07/05/25                Ngày đăng: 08/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. M. Aboelezz, A.A. Eladl, M.T. A. Amasha, M. H. Elderigi, M. A. Mohamed, S. W. Aldaodaoa, A. R. Elhameyd, H. M. Alnegeri, T. M. Elshreef, A. A. Eldwany, M. S. Shabka, B. N. Alhasnawi, B. E. Sedhom, and V. Bureš, “Efficient fault detection, localization, and isolation in MT-HVDC systems based on distance protection and LoRaWAN communication,” Energy Reports, vol. 10, pp. 4183–4197, Nov. 2023, doi: 10.1016/j.egyr.2023.10.083.
[2] A. P. Oliveira, F. A. Moreira, and A. F. Picanço, “Accuracy analysis using the EMD and VMD for two-terminal transmission line fault location based on traveling wave theory,” Electric Power Systems Research, vol. 224, Nov. 2023, Art. no. 109667, doi: 10.1016/j.epsr.2023.109667.
[3] S. Belagoune, N. Bali, A. Bakdi, B. Baadji, and K. Atif, “Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems,” Measurement, vol. 177, Jun. 2021, Art. no. 109330, doi: 10.1016/j.measurement.2021.109330.
[4] S. R. Fahim, Y. Sarker, S. K. Sarker, M. R. I. Sheikh, and S. K. Das, “Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification,” Electric Power Systems Research, vol. 187, Oct. 2020, Art. no. 106437, doi: 10.1016/j.epsr.2020.106437.
[5] A. P. Shafei, J. F. A. Silva, and J. Monteiro, “Convolutional neural network approach for fault detection and characterization in medium voltage distribution networks,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 10, Dec. 2024, Art. no. 100820, doi: 10.1016/j.prime.2024.100820.
[6] B. Khabaz, M. Saad, and H. Mehrjerdi, “Fault classification in distribution system utilizing imaging time-series, convolutional neural network and adaptive relay protection,” Electric Power Systems Research, vol. 238, Jan. 2025, Art. no. 111143, doi: 10.1016/j.epsr.2024.111143.
[7] A. Abdullah, “Ultrafast Transmission Line Fault Detection Using a DWT-Based ANN,” IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1182–1193, Mar. 2018, doi: 10.1109/TIA.2017.2774202.
[8] S. Bhaumik, A. Chattopadhyaya, and J. N. Bera, “Detection and classification of faults in renewable energy penetrated stand alone microgrids using SVM and DWT techniques,” Electric Power Systems Research, vol. 245, Aug. 2025, Art. no. 111634, doi: 10.1016/j.epsr.2025.111634.
[9] Q. Zhang, Z. Qi, P. Cui, M. Xie, and J. Din, “Detection of single-phase-to-ground faults in distribution networks based on Gramian Angular Field and Improved Convolutional Neural Networks,” Electric Power Systems Research, vol. 221, Aug. 2023, Art. no. 109501, doi: 10.1016/j.epsr.2023.109501.
[10] Q. Zhang, W. Ma, G. Li, J. Ding, and M. Xie, “Fault diagnosis of power grid based on variational mode decomposition and convolutional neural network,” Electric Power Systems Research, vol. 208, Jul. 2022, Art. no. 107871, doi: 10.1016/j.epsr.2022.107871.
DOI: https://doi.org/10.34238/tnu-jst.12240
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu