PHƯƠNG PHÁP HỌC BAYES TRONG MẠNG NƠ RON TẾ BÀO RỜI RẠC ỨNG DỤNG CHO XỬ LÝ ẢNH
Thông tin bài báo
Ngày nhận bài: 19/03/25                Ngày hoàn thiện: 30/06/25                Ngày đăng: 30/06/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] L. O. Chua and L. Yang, “Cellular Neural Networks: Theory,” IEEE T. Circuits Syst., vol. 35, pp. 1257-1272, 1988.
[2] L. O. Chua and L. Yang, “Cellular Neural Networks: Applications,” IEEE T. Circuits Syst., vol. 35, pp. 1273-1290, 1988.
[3] K. Kim, S. Lee, J. Y. Kim, M. Kim, and H. J. Yoo, “A Configurable Heterogeneous Multicore Architecture With Cellular Neural Network For Real-time Object Recognition,” IEEE T. Circ. Syst. Vid., vol. 19, no. 11, pp. 1612-1622, 2009.
[4] G. Costantini, D. Casali, and M. Carota, “CNN-Based Unsupervised Pattern Classification For Linearly And Non Linearly Separable Data Sets,” WSEAS Transactions on Circuits and Systems, vol. 4, no. 5, pp. 448-452, 2005.
[5] A. Kananen, A. Paasio, M. Laiho, and K. Halonen, “CNN Applications From The Hardware Point Of View: Video Sequence Segmentation,” International Journal of Circuit Theory and Applications, vol. 30, no. 2-3, pp. 117-137, 2002.
[6] J. A. Nossek, “Design And Learning With Cellular Neural Networks,” in Third IEEE International Workshop on Cellular Neural Networks and their Applications, Rome, 1994, pp. 137-146.
[7] M. Vinyoles-Serra, S. Jankowski, and Z. Szymanski, “Cellular Neural Network Learning Using Multilayer Perceptron,” in 20th European Conference on Circuit Theory and Design, Linkping, 2011, pp. 214-217.
[8] C. Güzeliş and S. Karamahmut, “Recurrent Perceptron Learning Algorithm For Completely Stable Neural Networks,” in Third IEEE International Workshop on Cellular Neural Networks and their Applications, Rome, 1994, pp. 177-182.
[9] T. Kozek, T. Roska, and L. O. Chua, “Genetic Algorithm For CNN Template Learning,” IEEE T. Circuits Syst., vol. 40, no. 6, pp. 392-402, 1993.
[10] M. Ünal, M. Onat, and A. Bal, “Cellular Neural Network Training By Ant Colony Optimization Algorithm,” in IEEE 18th Signal Processing and Communications Applications Conference, Diyarbakır, 2010, pp. 1661-1666.
[11] H. M. Özer, A. Özmen, and H. Şenol, “Bayesian Estimation Of Discrete-time Cellular Neural Network Coefficients,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 25, pp. 2363 – 2374, 2017.
[12] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations Of State Calculations By Fast Computing Machines,” J. Chem. Phys., vol. 21, pp. 1087-1092, 1953.
[13] W. K. Hastings, “Monte Carlo Sampling Methods Using Markov Chains And Their Applications,” Biometrika, vol. 57, pp. 97-109, 1970.
[14] S. Arik, “Stability Analysis Of Dynamical Neural Networks,” PhD. Thesis, South Bank University, UK, 1997.
[15] R. M. Neal, “Bayesian Learning For Neural Networks,” PhD. Thesis, University of Toronto, Canada, 1995.
[16] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, UK: Cambridge University Press, Cambridge, 2003.
[17] C. M. Bishop, Pattern Recognition and Machine Learning, USA: Springer, 2006.
[18] DeepSeek Team, “DeepSeek-R1: Incentivizing Reasoning Capability In LLMs Via Reinforcement Learning Computation And Language,” arXiv:2501.12948, 2025. [Online]. Available: https://arxiv.org/abs/2501.12948. [Accessed March 15, 2025].
DOI: https://doi.org/10.34238/tnu-jst.12343
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





