THIẾT KẾ HỆ THỐNG CRISPR/CAS9 BẤT HOẠT GENE StGBSS2 LIÊN QUAN ĐẾN TÔNG HỢP AMYLOSE Ở GIỐNG KHOAI TÂY ATLANTIC
Thông tin bài báo
Ngày nhận bài: 03/04/25                Ngày hoàn thiện: 29/06/25                Ngày đăng: 29/06/25Tóm tắt
Từ khóa
Toàn văn:
PDFTài liệu tham khảo
[1] A. Tuncel and Y. Qi, “CRISPR/Cas mediated genome editing in potato: Past achievements and future directions”, Plant Sci., vol. 325, p. 111474, 2022.
[2] H.W. Maurer, “Starch in the Paper Industry”, in: J. BeMiller, R. Whistler (Eds.) Starch (Third Edition), Academic Press, San Diego, pp. 657-713, 2009.
[3] M. Jiao, Y. Gao and Y. Tian, “Study the relationship between the microstructure and characteristics of quinoa starch by compared with common cereal starches”, Am. J. Biochem. Biotechnol., vol. 16, no. 4, pp. 561–567, 2020.
[4] H. Yangcheng, H. Jiang, M. Blanco and J. J. Jane, “Characterization of normal and waxy corn starch for bioethanol production”, J. Agric. Food Chem., vol. 61, pp. 379–386, 2013.
[5] C. Tong, Z. Ma, H. Chen, and H. Gao, “Toward an understanding of potato starch structure, function, biosynthesis, and applications”, Food Frontiers, vol. 4, no. 3, pp. 980–1000, 2023.
[6] X. Zhao, M. Andersson and R. Andersson, “Resistant starch and other dietary fiber components in tubers from a high-amylose potato”, Food Chemistry, vol. 251, pp. 58–63, 2018.
[7] Nazarian-Firouzabadi F and R. G. F. , “Potato starch synthases: Functions and relationships”, Biochem. Biophys. Rep., vol. 10, pp. 7-16, 2017
[8] F. Veillet, L. Chauvin, M. P. Kermarrec et al, “The Solanum tuberosum GBSSI gene: A target for assessing gene and base editing in tetraploid potato”, Plant Cell Reports, vol. 38, pp. 1065–1080, 2019.
[9] M. Andersson, H. Turesson, A. Nicolia et al, “Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts, Plant Cell Report, vol. 36, pp. 117–128, 2017.
[10] I. E. Johansen, Y. Liu , B. Jørgensen B. et al, “High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato”, Sci Rep, vol. 9, no. 1, p. 17715, 2019.
[11] H. Kusano, A. Takeuchi and H. Shimada, “Efficiency of potato genome editing: Targeted mutation on the genes involved in starch biosynthesis using the CRISPR/dMac3-Cas9 system”, Plant Biotechnol. (Tokyo), vol. 40, no.3, pp. 201-209, 2023.
[12] J.J. Doyle and J. L. Doyle, “Isolation of plant DNA from fresh tissue”, Focus, vol. 12, no. 1, pp. 13-15, 1990.
[13] J. Sambrook and D.W. Russel, Molecular cloning: A laboratory manual, 3rd edition. Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, 2001.
[14] H. Liu, Y. Ding, Y. Zhou, W. Jin et al, “CRISPR-P 2.0: an improved CRISPR/Cas9 tool for genome editing in plants”, Molecular Plant, vol. 10, no. 3, pp. 530-532, 2017a.
[15] M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction”, Nucleic Acids Research, vol. 31, no. 13, pp. 3406-3415, 2003.
[16] M. Stemmer, T. Thumberger, M. D. Keyer et al, “CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool” PloS One, vol. 10, no. 4, p. 0124633, 2015.
[17] G. Liang, H. Zhang, D. Lou and D. Yu, “Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing”, Scientific Reports, vol. 6, p. 21451. 2016.
[18] L. Abeuova, B. Kali, D. Tussipkan et al., “CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato”, Transgenic Res., vol. 32, no. 5, pp. 383–397, 2023.
[19] S. Toinga-Villafuerte, M.I. Vales, J. M. Awika and K. S., “Rathore KS. CRISPR/Cas9-Mediated Mutagenesis of the Granule-Bound Starch Synthase Gene in the Potato Variety Yukon Gold to Obtain Amylose-Free Starch in Tubers”, Int J Mol Sci. vol 23, no. 9, pp. 4640, 2022.
[20] P.N. Duy, D. T. Lan, H. Ph. Thu et al, “Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter”, PLoS One, vol. 16, no. 9, p. e0255470, 2021.
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu





