ĐIỀU KHIỂN TRƯỢT DỰA TRÊN MẠNG NƠ-RON THÍCH NGHI CHO THIẾT BỊ BAY KHÔNG NGƯỜI LÁI BỐN CÁNH QUẠT DƯỚI TÁC ĐỘNG CỦA NHIỄU
Thông tin bài báo
Ngày nhận bài: 11/04/25                Ngày hoàn thiện: 09/05/25                Ngày đăng: 09/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] D. K. D. Villa, A. S. Brandão, and M. Sarcinelli-Filho, “A Survey on Load Transportation Using Multirotor UAVs,” Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 98, no. 2, pp. 267–296, May 2020, doi: 10.1007/S10846-019-01088-W/METRICS.
[2] M. Lyu, Y. Zhao, C. Huang, and H. Huang, “Unmanned Aerial Vehicles for Search and Rescue: A Survey,” Remote Sensing 2023, Vol. 15, Page 3266, vol. 15, no. 13, Jun. 2023, Art. no. 3266, doi: 10.3390/RS15133266.
[3] W. Budiharto, E. Irwansyah, J. S. Suroso, A. Chowanda, H. Ngarianto, and A. A. S. Gunawan, “Mapping and 3D modelling using Quadrotor drone and GIS software,” J. Big Data, vol. 8, no. 1, pp. 1–12, Dec. 2021, doi: 10.1186/S40537-021-00436-8/FIGURES/7.
[4] M. Sivakumar and T. Y. J. N. Malleswari, “A Literature Survey of Unmanned Aerial Vehicle Usage for Civil Applications,” Journal of Aerospace Technology and Management, vol. 13, Nov. 2021, Art. no. e4021, doi: 10.1590/JATM.V13.1233.
[5] I. Lopez-Sanchez and J. Moreno-Valenzuela, “PID control of quadrotor UAVs: A survey,” Annu Rev Control, vol. 56, Jan. 2023, Art. no. 100900, doi: 10.1016/J.ARCONTROL.2023.100900.
[6] J. Lin, Z. Miao, Y. Wang, G. Hu, X. Wang, and H. Wang, “Error-State LQR Geofencing Tracking Control for Underactuated Quadrotor Systems,” IEEE/ASME Transactions on Mechatronics, vol. 29, no. 2, pp. 1146–1157, Apr. 2024, doi: 10.1109/TMECH.2023.3292893.
[7] W. Xie, D. Cabecinhas, R. Cunha, and C. Silvestre, “Adaptive Backstepping Control of a Quadcopter with Uncertain Vehicle Mass, Moment of Inertia, and Disturbances,” IEEE Transactions on Industrial Electronics, vol. 69, no. 1, pp. 549–559, Jan. 2022, doi: 10.1109/TIE.2021.3055181.
[8] C. A. I. Zhenhuan, S. Zhang, and X. Jing, “Model predictive controller for quadcopter trajectory tracking based on feedback linearization,” IEEE Access, vol. 9, pp. 162909–162918, 2021, doi: 10.1109/ACCESS.2021.3134009.
[9] X. Liu, Z. Yuan, Z. Gao, and W. Zhang, “Reinforcement Learning-Based Fault-Tolerant Control for Quadrotor UAVs Under Actuator Fault,” IEEE Trans Industr. Inform, vol. 20, no. 12, pp. 13926–13935, Sep. 2024, doi: 10.1109/TII.2024.3438241.
[10] G. Han, O. Mofid, S. Mobayen, and M. H. Khooban, “Adaptive prescribed performance based on recursive nonsingular terminal sliding mode control for quad-rotor systems under uncertainty and disturbance: Real-time validation,” Aerosp Sci. Technol, vol. 147, Apr. 2024, Art. no. 109028, doi: 10.1016/J.AST.2024.109028.
[11] O. Mechali, L. Xu, Y. Huang, M. Shi, and X. Xie, “Observer-based fixed-time continuous nonsingular terminal sliding mode control of Quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment,” Control Eng Pract, vol. 111, Jun. 2021, Art. no. 104806, doi: 10.1016/J.CONENGPRAC.2021.104806.
[12] S. J. Gambhire, D. R. Kishore, P. S. Londhe, and S. N. Pawar, “Review of sliding mode based control techniques for control system applications,” Int. J. Dyn. Control, vol. 9, no. 1, pp. 363–378, Mar. 2021, doi: 10.1007/S40435-020-00638-7/METRICS.
[13] Y. Mousavi, G. Bevan, I. B. Kucukdemiral, and A. Fekih, “Sliding mode control of wind energy conversion systems: Trends and applications,” Renewable and Sustainable Energy Reviews, vol. 167, Oct. 2022, Art. no. 112734, doi: 10.1016/J.RSER.2022.112734.
[14] J. Hu, H. Zhang, H. Liu, and X. Yu, “A survey on sliding mode control for networked control systems,” Int. J. Syst. Sci., vol. 52, no. 6, pp. 1129–1147, Apr. 2021, doi: 10.1080/00207721.2021.1885082.
[15] X. Lin, Y. Wang, and Y. Liu, “Neural-network-based robust terminal sliding-mode control of Quadrotor,” Asian J. Control, vol. 24, no. 1, pp. 427–438, Jan. 2022, doi: 10.1002/ASJC.2478.
[16] Q. Liu, D. Li, S. S. Ge, R. Ji, Z. Ouyang, and K. P. Tee, “Adaptive bias RBF neural network control for a robotic manipulator,” Neurocomputing, vol. 447, pp. 213–223, Aug. 2021, doi: 10.1016/J.NEUCOM.2021.03.033.
[17] H. Pang, M. Liu, C. Hu, and F. Zhang, “Adaptive sliding mode attitude control of two-wheel mobile robot with an integrated learning-based RBFNN approach,” Neural Comput. Appl., vol. 34, no. 17, pp. 14959–14969, Sep. 2022, doi: 10.1007/S00521-022-07304-3/METRICS.
[18] R. Ma, J. Han, and L. Ding, “Finite-time trajectory tracking control of Quadrotor UAV via adaptive RBF neural network with lumped uncertainties,” Mathematical Biosciences and Engineering, vol. 20, no. 2, pp. 1841–1855, 2022, doi: 10.3934/mbe.2023084.
[19] M. Labbadi and M. Cherkaoui, “Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain Quadrotor UAV subjected to disturbances,” ISA Trans, vol. 99, pp. 290–304, Apr. 2020, doi: 10.1016/J.ISATRA.2019.10.012.
[20] J.Xu, P. Shi, C. C. Lim, C. Cai, and Y. Zou, “Reliable Tracking Control for Under-Actuated Quadrotors with Wind Disturbances,” IEEE Trans Syst Man Cybern Syst, vol. 49, no. 10, pp. 2059–2070, Oct. 2019, doi: 10.1109/TSMC.2017.2782662.
[21] Y. Hu, H. Yan, H. Zhang, M. Wang, and L. Zeng, “Robust Adaptive Fixed-Time Sliding-Mode Control for Uncertain Robotic Systems with Input Saturation,” IEEE Trans Cybern, vol. 53, no. 4, pp. 2636–2646, Apr. 2023, doi: 10.1109/TCYB.2022.3164739.
DOI: https://doi.org/10.34238/tnu-jst.12556
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu