LOẠI BỎ PHỐT PHÁT HIỆU QUẢ TỪ DUNG DỊCH NƯỚC BẰNG PHƯƠNG PHÁP KEO TỤ ĐIỆN VỚI ĐIỆN CỰC NHÔM VÀ CHẾ ĐỘ ĐẢO NGƯỢC ĐIỆN CỰC
Thông tin bài báo
Ngày nhận bài: 20/04/25                Ngày hoàn thiện: 21/05/25                Ngày đăng: 22/05/25Tóm tắt
Từ khóa
Toàn văn:
PDF (English)Tài liệu tham khảo
[1] A. Attour, M. Touati, M. Tlili, M. Ben Amor, F. Lapicque, and J. P. Leclerc, “Influence of operating parameters on phosphate removal from water by electrocoagulation using aluminum electrodes,” Sep. Purif. Technol., vol. 123, pp. 124–129, 2014, doi: 10.1016/j.seppur.2013.12.030.
[2] Y. Tian, W. He, X. Zhu, W. Yang, N. Ren, and B. E. Logan, “Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater,” ACS Sustain. Chem. Eng., vol. 5, no. 1, pp. 67–71, 2017, doi: 10.1021/acssuschemeng.6b01613.
[3] W. Fu et al., “Design optimization of bimetal-modified biochar for enhanced phosphate removal performance in livestock wastewater using machine learning,” Bioresour. Technol., vol. 418, p. 131898, 2025.
[4] V. Kuokkanen, T. Kuokkanen, J. Rämö, U. Lassi, and J. Roininen, “Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes - Techno-economic studies,” J. Water Process Eng., vol. 8, pp. e50–e57, 2015, doi: 10.1016/j.jwpe.2014.11.008.
[5] Q. Hu, L. He, R. Lan, C. Feng, and X. Pei, “Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review,” Sep. Purif. Technol., vol. 308, no. October 2022, p. 122944, 2023, doi: 10.1016/j.seppur.2022.122944.
[6] J. Qian, X. Zhou, Q. Cai, J. Zhao, and X. Huang, “The Study of Optimal Adsorption Conditions of Phosphate on Fe-Modified Biochar by Response Surface Methodology,” Molecules, vol. 28, no. 5, 2023, doi: 10.3390/molecules28052323.
[7] A. Dura and C. B. Breslin, “The removal of phosphates using electrocoagulation with Al−Mg anodes,” J. Electroanal. Chem., vol. 846, no. January, p. 113161, 2019, doi: 10.1016/j.jelechem.2019.05.043.
[8] E. Lacasa, P. Canizares, C. Saez, F. J. Fernandez, and M. A. Rodrigo, “Electrochemical phosphates removal using iron and aluminium electrodes,” Chem. Eng. J., vol. 172, no. 1, pp. 137–143, 2011.
[9] A. Violante, M. Pucci, V. Cozzolino, J. Zhu, and M. Pigna, “Sorption/desorption of arsenate on/from Mg-Al layered double hydroxides: Influence of phosphate,” J. Colloid Interface Sci., vol. 333, no. 1, pp. 63–70, 2009, doi: 10.1016/j.jcis.2009.01.004.
[10] E. K. Maher et al., “Analysis of operational parameters, reactor kinetics, and floc characterization for the removal of estrogens via electrocoagulation,” Chemosphere, vol. 220, pp. 1141–1149, 2019, doi: 10.1016/j.chemosphere.2018.12.161.
[11] A. Dura and C. B. Breslin, “Electrocoagulation using stainless steel anodes: Simultaneous removal of phosphates, Orange II and zinc ions,” J. Hazard. Mater., vol. 374, no. April, pp. 152–158, 2019, doi: 10.1016/j.jhazmat.2019.04.032.
[12] Y. Yang et al., “Removal of phosphate in secondary effluent from municipal wastewater treatment plant by iron and aluminum electrocoagulation: Efficiency and mechanism,” Sep. Purif. Technol., vol. 286, 2022, Art. no. 120439, doi: 10.1016/j.seppur.2021.120439.
[13] S. Zhang, J. Zhang, W. Wang, F. Li, and X. Cheng, “Removal of phosphate from landscape water using an electrocoagulation process powered directly by photovoltaic solar modules,” Sol. Energy Mater. Sol. Cells, vol. 117, pp. 73–80, 2013, doi: 10.1016/j.solmat.2013.05.027.
[14] H. Zhao, J. Chang, A. Boika, and A. J. Bard, “Electrochemistry of high concentration copper chloride complexes,” Anal. Chem., vol. 85, no. 16, pp. 7696–7703, 2013, doi: 10.1021/ac4016769.
[15] A. Almukdad, M. A. Hafiz, A. T. Yasir, R. Alfahel, and A. H. Hawari, “Unlocking the application potential of electrocoagulation process through hybrid processes,” J. Water Process Eng., vol. 40, no. February, p. 101956, 2021, doi: 10.1016/j.jwpe.2021.101956.
[16] M. Mahmood, N. G. Yasri, and E. P. L. Roberts, “Electrocoagulation Using a Hybrid Combination of Iron and Aluminum Electrodes with Asymmetric Polarity Reversal,” ACS ES T Water, vol. 5, no. 2, pp. 703–712, 2025, doi: 10.1021/acsestwater.4c00762.
[17] J. N. Hakizimana et al., “Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches,” Desalination, vol. 404, pp. 1–21, 2017, doi: 10.1016/j.desal.2016.10.011.
[18] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, 2008, doi: 10.1016/j.talanta.2008.05.019.
[19] J. P. C. Kleijnen, “Response surface methodology,” Int. Ser. Oper. Res. Manag. Sci., vol. 216, no. 2, pp. 81–104, 2015, doi: 10.1007/978-1-4939-1384-8_4.
[20] G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, “Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon,” Chem. Eng. J., vol. 313, pp. 993–1003, 2017, doi: 10.1016/j.cej.2016.10.141.
[21] M. S. Bhatti, A. S. Reddy, R. K. Kalia, and A. K. Thukral, “Modeling and optimization of voltage and treatment time for electrocoagulation removal of hexavalent chromium,” Desalination, vol. 269, no. 1–3, pp. 157–162, 2011, doi: 10.1016/j.desal.2010.10.055.
DOI: https://doi.org/10.34238/tnu-jst.12629
Các bài báo tham chiếu
- Hiện tại không có bài báo tham chiếu